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CHAPTER 8

INTEGRAL EQUATIONS

Integral equations have arrested the interest of mathematicians for over
a century (see Elliott 1980). Most integral equations do not have closed-form
solutions; however, they can often be discretized and solved on a digital com-
puter. Proof of the existence of the solution to an integral equation by dis-
cretization was first presented by Fredholm (1903). But such a discretization
procedure was not feasible until the advent of the digital computer, which, in
recent decades, created a “boom” in interest concerning integral equations.

When inhomogeneities are piecewise constant in each region, we may
solve such problems using the surface integral equation technique. In this
technique, the homogeneous-medium Green’s functions are found for each
region. Then, the field in each region is written in terms of the field due to
any sources in the region plus the field due to surface sources at the inter-
faces between the regions, following Huygens’ principle. Next, the boundary
conditions at these interfaces are used to set up integral equations known
as surface integral equations. From these integral equations, the unknown
surface sources at the interfaces can be solved for.

The surface integral equation method is rather popular in a number of
applications, because it employs a homogeneous-medium Green’s function
which is simple in form, and the unknowns are on a surface rather than in
a volume. Moreover, the surface integral equation method is not limited to
piecewise-constant inhomogeneities. For example, if each region is a layered
medium whose Green’s function is available as shown in Chapter 7, surface
integral equations can be formulated for unknowns at interfaces between such
regions.

For a"bounded inhomogeneity, an alternative method is to view the scat-
tered field as due to the induced currents flowing in the inhomogeneity. Now,
the induced currents are proportional to the total field in the inhomogene-
ity. But in turn, the total field is the incident field plus the field due to
induced currents in the inhomogeneity. So, this concept yields an equation
called the volume integral equation from which the unknown field inside the
inhomogeneity can be solved for.
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In this chapter, the surface integral equations' both for scalar and vec-
tor fields will be studied first. Then, the volume integral equation will be
discussed next.

§8.1 Surface Integral Equations

In an integral equation, the unknown to be sought is embedded in an
integral. When the unknown of a linear integral equation is embedded inside
the integral only, the integral equation is of the first kind. But when the
unknown occurs both inside and outside the integral, the integral equation is
of the second kind. An integral equation can be viewed as an operator equa-
tion. Thus, the matrix representation of such an operator equation (Chapter
5) can be obtained, and then the unknown is easily solved for with a com-
puter. Later, we shall see how such integral equations with only surface
integrals are derived, beginning with the scalar wave equation, followed by
the vector wave equation case.

An early form of such a surface integral equation was first derived by
Green (1818) through the use of Green’s theorem. Since then, his idea has
been adapted to solve different problems. Many of these works are listed in
the references for this chapter. Poggio and Miller (1973), in addition, provide
an extensive reference list for works in this area. The advantage of the surface
integral equations is that they reduce the dimensionality of a problem by one.
For example, a three-dimensional problem is reduced to a lower dimensional
problem involving surface integrals.

§§8.1.1 Scalar Wave Equation

Consider a scalar wave equation for a two-region problem as shown in
Figure 8.1.1. In region 1, the governing equation for the total field is

(V2 + k) 1 (r) = Q(x), (8.1.1)

while in region 2, it is
(V2 + k2) ¢p(r) = 0. (8.1.2)

Therefore, we can define Green’s functions for regions 1 and 2 respectively to
satisfy the following equations:

(V2 + k?) gl(r,r') = —6(1‘ - rl)a ‘ (813)

(V2 + k2) go(r, 1) = —6(r — 1'). (8.1.4)

On multiplying Equation (1) by g1(r,r’) and Equation (3) by ¢:(r), subtract-
ing the two resultant equations, and integrating over region 1, we have, for

1 These are sometimes called boundary integral equations.

§8.1 SURFACE INTEGRAL EQUATIONS 431

e ——
- TS —

// Region | ~

. ———_——

Figure 8.1.1 A two-region problem can be solved with a surface
integral equation.

reVv,

[ 4V 106, 5)9%1(0) - 6100905,
1%
= /dVgl(r,r’)Q(@‘) +¢1(r'), eV (8.15)

Since V - (gV¢ — ¢Vg) = gV2¢ — ¢$V2g, by applying Gauss’ theorem, the
volume integral on the left-hand side of (5) becomes a surface integral over
the surface bounding V;. Consequently,?

- / 45 [0:(r,¥)Va(x) — 1(0) Vg (r, )]
S+Sinf

= —¢i(r') + 41(r), ' €Vi. (8.1.6)

In the above, we have let

Binelr') = — / 4V g1(r,°)Q(r), (8.1.7)
Vi .

since it is the incident field generated by the source @(r). Note that up to
this point, g;(r,r’) is not explicitly specified, and the manipulation up to (6)

2 The equality of the volume integral on the left-hand side of (5) and the surface integral
on the left-hand side of (6) is also known as Green’s theorem.
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is legitimate as long as g(r,1’) is a solution of (3). For example, a possible
choice for g;(r,r’) that satisfies the radiation condition is?

ik le=r|

gi(r, ) = (8.1.8)

4rnlr — |’

which is the unbounded, homogeneous medium scalar Green’s function (see

Subsection 1.3.4). In this case, @uc(r) is the incident field generated by the.

source Q(r) in the absence of the scatterer. Moreover, the integral over Sy,
vamshes when Sj,r — oo by virtue of the radiation condition (see Exercise
8.1). Then, after swapping r and r', we have

$1(5) = el / iS5 - [ (r, ¥ ) V1 () — hi(E)V'en(e, )], r € VA

(8.1.9)
But if v/ ¢ V; in (5), the second term on the right-hand side of (5) would be
zero, for r’ would be in V; where the integration is not performed. Therefore
we can write (9) as

re ‘/17 ¢1(I‘)

P P te) - [ 457 (e )T — )V (2,

s

(8.1.10)
The above equation is evocative of Huygens' principle. It says that when
the observation point r is in V3, then the total field ¢;(r) consists of the
incident field, @so(r), and the contribution of field due to surface sources
on §. But if the observation point is in Vz, then the surface sources on S
generate a field that exactly cancels the incident field ¢unc(r), making the
total field in region 2 zero. This fact is the core of the e:z:tmctwn theorem

(see Born and Wolf 1980).

In (10), A - Ve (r) and ¢:1(r) act as surface sources. Moreover, they are
impressed on S, creating a field in region 2 that cancels exactly the incident
field in region 2 (see Figure 8.1.2).

Applying the same derivation to region 2, we have (see Exercise 8.2)

re ‘/Za ¢2(I‘)

reV;, 0 } S/dS“' [gz r, ¥)Vs(r) — ¢o(r) V' go(r, ')}

(8.1.11)
The above states that the field in region 2 is due to some surface sources
impressed on S. These surface sources generate ¢(r) in V3, but zero field in
V;. This is again evocative of Huygens’ principle. [Note that go(r,r’ ) need
not have the same form as g,(r,r’) in (8) (Exercise 8.2).]

3 Note that this is not the only form satisfying the radiation condition at infinity and
satisfying (3) in V4 (see Exercise 8.1).
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Figure 8.1.2 The illustration of the extinction theorem.

Applying the extinction theorem, integral equations can now be derived.
So, using the lower parts of Equations (10) and (11), we have

Pine(r) = / ds' ' - [gi(r, v) Vi (') — 1 (r) V' (r,1)], T eV,
% (8.1.12a)

0= / dS' 7 - [galr, )V da(r') — do(t') V'gs(r,¥)], T € VA
J (8.1.12b)

Even though g;(r,r) and g.(r,r’) need not be homogeneous-medium Green’s
functions (Exercise 8.2}, homogeneous-medium Green’s functions, for sim-
plicity, are usually chosen. Then, the two integral equations above will have
four independent unknowns, ¢;, ¢o, 72- V1, and 72- Ve, on S. Next, boundary
conditions can be used to eliminate two of these four unknowns. Exemplary
boundary conditions are .

$1(r) = ¢o(r), res, (8.1.13a)

pife- Vi (r) = pai - Va(r), re S (8.1.13b)

Consequently, the integral equations in (12) can be treated as linear oper-
ator equations and solved with standard techniques (see Chapter 5). Here,
the Green’s function g(r, r’) and 7 - V'g(r,1’) are the kernel of the integral
equation.

§§8.1.2 Vector Wave Equation

. Consider the vector electromagnetic wave equation for a two-region prob-
lem as shown in Figure 8.1.3. In region 1, the field satisfies the equation

V x V x Ey(r) = e Eq(r) = iwpi I (). (8.1.14)
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Figure 8.1.3 A two-region problem where a surface integral equation
can be derived. :
In region 2, the field satisfies
V x V x Ey(r) — w?poesEq(r) = 0. (8.1.15)

Hence, the dyadic Green’s functions for region 1 and region 2 respectively are
defined by: . .

V xV x Gy(r,r') ~ w?u16,Gy(r,r') = 16(r — 1), (8.1.16)
V x V x Gy(r, 1) - w?pseaGy(r, ') = 16(r — 1) (8.1.17)

After post-multiplying Equation (14) with G, and pre-multiplying Equation
(16) with E,(r), subtracting the two equations, and integrating the result
over Vj, we have

/dV [V x V x Ei(r) - Gi(r,r') —Ey(r) - V x V x Gy(r,r')]
Vi .

= iwi /dVJ(r) -Gy(r,r') — Ey (1), reVi.. (81.18)
14

_ The left-hand side of the above becomes a surface integral using the fact that?
VAV x By (r)] x Gy(r,r') + Eq(r) x [V x Gy(r, )]}
=V x VxEy(r) - Gy(r,r') - E(r) - V x V x Gy(r,r'). (8.1.19)

4 We can post-multiply (19) by an arbitrary constant vector b to aid in the derivation and
cancel the constant vector later. The equality of the volume integral on the left-hand
side of (18) to a surface integral is also known as the vector Green’s theorem.
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Moreover, the integral on the right-hand side of (18) corresponds to the inci-
dent wave. Hence, (18) becomes

Ei(r') = Eane(r') + / dS i - {[V x Ey(r)] x Gu(r,r).

$+5;ns »
4Ei(r) x Vx Gyi(r,r)}, reVi, (8.1.20)
where

Eine(r') = iwpi / 4V 3(x) - G (r, ') = iwpn / VG (,r) - I(r)
J J : (8.1.21)

is the incident field generated by the current J(r). In the above, we have
made use of the reciprocity condition on the dyadic-Green’s function that
[see (1.3.52b) of Chapter 1]

Gi(r,r) = Gy(r', 1) .(8.1.22)

Up to this point, G(r,r') need only satisfy (16). However, if G;(r,r') is
assumed to be the homogeneous-medium dyadic Green’s function given in
Chapter 1 and Chapter 7, then E;,. corresponds to the incident field gener-
ated by J(r) in the absence of the scatterer.

Using (22), we deduce that
A+ [V x Ei(r)] X Gi(r, ) = 2 x [V x Ey(r)] - Gy(r, ')

= iw G1(r',r) - o x Hy(r).
(8.1.23)

Moreover, by assuming that G, (r, r) is the unbounded homogeneous-medium
dyadic Green’s function, then®

7 - Ey(r) x V x Gy(r, r;) =7 x Ey(r) -V x Gy(r,r')
=— [V x Gy(r',r)] - & x Eq(r),
(8.1.24)

Hence, Equation (20) becomes
Ey(F) = Bun(t) + [ dS {iomGr(',1) - x Ha(o)
s

= [VxGy(r',r)] - A x Eq(r)}.  (8.1.25)

Now, if G;(r, ') satisfies the radiation condition, the integral over Sinf van-
ishes when S;,; — oo. Note that in (18), if r' ¢ V;, the second term on

® The second equality follows from [V x Gy (r,r')]t = =V x Gy(r’,r) [Exercise 8.3, and
also (1.4.14) of Chapter 1]. .
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the right-hand side of (18) vanishes. Consequently, the analogue of (10) for
electromagnetic fields, after swapping r and r’, is :

rev, El(r)‘

%Eincr +/dS’ i Ge(r, ) - A x Hy(r'
reV 0 } (r) {iwm Gi(r,r") 1(r")

S
= [V xGi(r,r)] -7 x By(r)} . (8.1.26)

Again, the above is similar to Huygens’ principle for electromagnetic fields.
Furthermore, the lower part of the equation is the vector analogue of the
extinction theorem.

In region 2, analogous to Equation (11), similar derivation yields (see
Exercise 8.3)
r€Va, Ea(r)

=— [ d§' {iwu, &G r,r') A x Hy(r'
reV;, 0 } s/ {#rGa(r,x) 2(r')

— [V x Ga(r,r')] -7 x By(r')}, (8.1.27)

where Go(r,r') is assumed to be the unbounded homogeneous-
medium Green’s function.

The lower parts of (26) and (27) form integral equations which are®

Eune(r) = [ 45" {iwmGi(e,) - #' x H(r)

s
—[V"x El(r,r')] A X Eq(r)}, reW,
(8.1.282)
0= /dS” {iwpGa(r, 1) - 7' x Hy(r') -
5
= [V x Gy(r, )] - &' x Bo(r')}, reW
: (8.1.28b)
The above, together with the boundary conditions that
A X Hy(r) =7 x Hy(r), 7 xE(r) =% Eyr) (8.1.29)

on S, can be solved for the surface unknowns # x E; and A x H;. Once
the surface fields are known, the field everywhere is derived from the upper
parts of Equations (26) and (27). Note that the dyadic Green’s functions in
(28a) and (28b) need not be homogeneous-medium Green’s functions given
in Chapters 1 and 7, but homogeneous-medium Green’s functions are chosen

- ® Variations of these integral equations are also given by Poggio and Miller (1973) and
Strém (1975). :
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for simplicity (Exercise 8.3). If an arbitrary dyadic function satisfies (16) in
region 1 but not the radiation condition at infinity, then the manipulation in
(24) is not possible. In this case, the resultant integral equation will have the
dyadic Green'’s functions to the right of the surface sources as in (20) (see
next subsection). '

Equations (28a) and (28b) are also known as the electric field intégral
equations (EFIE). By duality, the corresponding magnetic field integral equa-
tions (MFIE) can be derived. '

. §§8.1.3 The Anisotropic, Inhomogeneous-Medium Case

Surface integral equations can be derived even when region 1 and region
2 in Figure 8.1.3 consist of anisotropic, inhomogeneous media. In this case,
the electric field satisfies the vector wave equations (Section 1.3, Chapter 1)

Vx gtV x Ei(r) —w?e - Ey(r) = iwd(r), reV, (8.1.30)
VX @V x Ey(r) —w?& - Eofr) = 0, r € V. (8.1.31)

Moreover, we can define dyadic Green’s functions for regions 1 and 2 respec-
tively as '

V< (B{)" -V xGy(r,r') —w? & Gy(r,r') = (@) T6(r — 1), (8.1.32)

Vx ()7 V x Go(r, 1) —w? € - Go(r,r') = (@) 'Té(r—r').  (8.1.33)

On post-multiplying (30) by El(r, r') - b, we have’
[V xE -V x Ei(r)] - Gi(r,r') - b — By (r) - & - Ga(r,r') - b

' " =iwl(r) - Gy(r,r') - b, (8.1.34)

where b is an arbitrary constant vector. Then, after pre-multiplying (32) by

. "'By(r), and post-multiplying it by b, we have

Ei(r) -V x @)™V xGi(r,r') - b-w’Ey(r) - € - Gi(r,r') - b
' =E((r)é(r—r) - (@)1 -b. (8.1.35)

Next, integrating the difference of (34) and (35) over V;, for r' € ¥; yields
/dV [Vxgt-v xEl(r).-El(r,r’)-b _
Vi o ~Ei(r) -V x (@) » Vx Gy(r,1') - b]

='iw/d‘VJ(r) -'Gl.(r,r') ‘b —Ei(r')- () -b. (8.1.36)
-

7 Note that the dot product between two vectors A - B is actually At - B. Hence, the
dot product between € E and B is E-€-B. The transpose sign ¢ over the vector E is
usually ignored.
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With the identity that (Exercise 8.4)

VA VxE(r )]xﬁ( ) b+ Eq(r) x [(@1) 7 V x Gy(r,r') - b]}
=Vx[p;t V x Ey(r) (1)]-Gi(r, 1) b—E;(r)-V x [(EH™ -V x Gy(r, 1) - b]

(8.1.37)
Equation (36) becomes
Biw) = iw [ aV3I(e) - Clrx) () + [ dSh- (B9 x Br)
Vi 5
xGa(r, 1) () + Ex(r) x (@) V x Ga(r,r) - Bi()], r eV
(8.1.38)

But if G4(r,r’) satisfies the radiation condition at infinity, then the surface
integral over S;,¢ vanishes by virtue of the radiation condition. This is if the
anisotropic, inhomogeneous medium occupies only a finite region in space.
Observe now, we have removed the constant vector b which, up to this point,
has been used as a thinking aid. Then, using Maxwell’s equations and the
appropriate vector identity, Equation (38) becomes

E|(r') = iw/dVJ(r).él(r,r’) ~ﬁf(r’)+/d5 {iwn x Hi(r) - Gi(r, 1) - E(x')
14 s
+A x Ei(r) - [F{(r)] 71V x Gy(r, 1) - mi(r)}, ' eVi. (8.1.39)

Now, the above is just the generalized Huygens’ principle for a general aniso-
tropic inhomogeneous medium.

For r’ € V3, the second term on the right-hand side of (36) vanishes, and
(39) is modified accordingly. Consequently, the analogue of Equation (10) is

reVvy, Ei(r) }

= E;(r +/dS’ iwi x Hy(r') - G r) -t
rev, 0 (r) { 1(r') (', 1) - ()

S
+7' x Eo(r') - (m{(r)] -V x Gy(r',r) - mi(r)},  (8.1.40)

where Eq,c(r) is the first integral on the right-hand side of (39) which corre-
sponds to the field generated by the current source J(r) in the inhomogeneous
medium. Furthermore, the lower part of Equation (40) is just the generalized
extinction theorem for anisotropic inhomogeneous media.

In region 2, analogous to Equation (11), a similar derivation yields (see
Exercise 8.4)

V, EZ r —
; i Vj, 0 (x) } = —S/dS’ {iwd’ x Hy(r') - Go(r',r) - EL(r)
A X By(r') - [E5 ()] V! x Go(r',x) - mi(r)} . (8.1.41)

§8.1 SURFAGE INTEGRAL EQUATIONS 439

€1 M
Region 1

Figure 8.1.4 Inhomogeneity with two piecewise-constant regions for
the two-dimensional problem.

Finally, the integral equations for an anisotropic, inhomogeneous medium
are

—Epne(r) = /dSI {iwd’ x Ha(r') - Ga(r', x) - B ()

S
+7' x Eo(r) - [@H(r)] 71 V! x Ga(r',r) - Bi(x)}, reVa
(8.1.42a)
0= / 48" {iwi! x Hy(r') - Golr', 1) - BE(r)
J _
X Byl - (B0 -V X Galer) ()}, re Wi

(8.1.42b)

§§8.1.4 Two-Dimensional Electromagnetic Case

If the fields are three-dimensional because of the point nature of the
source, but the inhomogeneity is two dimensional and piecewise constant as
shown in Figure 8.1.4, we can represent the fields and the source in terms of
their Fourier transforms in the z direction. In other words, we can write

oo

3() = / dk. €23 (ks, p), (8.1.43)
2n

E(l”)=——21 / dk, €**E(k,, p), (8.1.44)
iy

H(r) = 21 / dk. e**H(k, p), (8.1.45)
vis
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where p = Zz + 9y.

Physically, Equations (43) to (45) express the three-dimensional fields as
linear superpositions of two-dimensional fields with e** dependence. But
since only two components of the electromagnetic field are truly independent
in this case, the field can be represented completely in terms of E, and H,.
In other words, the field in such a geometry can be decomposed into TM (or
E.) and TE (or H;) fields. These two-dimensional fields, in the integrands
of (43) to (45) in a homogeneous region, satisfy the equations (see Exercise
8.5)

(V2 + k2 — K2 E,(z,y) = —iwpd, + ikzg, (8.1.46a)
(V2 + Kk — K2 H(z,y) = —(Vs X Js)2) (8.1.46b)

where V; = :E(% + §2. In the above derivations, the e*:% dependence of
the transformed field has been assumed. Observe that the above equations
are applicable in homogeneous region 1 and region 2. Thus, in this manner,
a three-dimensional field problem with a two-dimensional inhomogeneity is
reduced to a linear superposition of two-dimensional problems with varying
k,. Such a problem is also called a two-and-one-half-dimensional problem.?
We shall discuss next the derivation of the corresponding surface integral
equations.

A horizontal electric dipole pointing in the § direction has J(r) = §1£5(z)
6(y)6(2). Therefore, (43) implies that

I(r) = §1£58(z) 6(y) 6(2)

=2y—7rIé / dk, e*%8(x) 6(y). (8.1.47)

In other words, a point source is a linear superposition of line sources with
different e*:* dependences. Furthermore, when such a source is embedded in
region 1, (46a) and (46b) become
Ik,
(V2 + ) Buu(p) = o 61(6) () (8.1.482)

(V2 + KL Hix(p) = —1¢8' (<) 6(y), (8.1.48b)

where k2, = k? — k2. The above are also known as the reduced wave equa-
tions because a three-dimensional field problem has been reduced to a two-
dimensional problem. Next, we define a two-dimensional Green’s function to
satisfy the following equation:

(V2 +K,)Gilp, o) = —8(p = ), (8.1.49)

8 The reduction of such a three-dimensional problem to a two-dimensional problem is well
known (see, e.g., Wait 1955 in references for Chapter 3; Chuang and Kong 1982).
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where 6(p) = 6(z)6(y). On applying concepts similar to the three-dimensional
scalar wave equation in arriving at (10), we derive

pEVL, Eunlp)\| _ Itk. 0 ,
peVe, 0 [ we, 5y 1P =0)

wey 6;1/’
_/ dS'a" - [Gi(p', P)V'sEra(p') — Era(p')V'sGr(p', p)].  (8.1.50)
S

In the above, Gi(p,p’) is the two-dimensional unbounded homogeneous-
medium Green's function, which is (Equation (2.2.4), Chapter 2]
3
Gilp, ') = H  (kulp — ). (8.1.51)

By the same token, a similar equation can be derived for H;,, giving

pe Viv le(P)
peVz, 0

- /dsl - [Gi(p, )V s Hio(p") — Hi(p)V'sGi(p, p)].  (8.1.52)
S

9 /

Moreover, applying the same concept to region 2 yields (Exercise 8.6)

pE ‘/2’ Ezz(p) 1t N/ / 7\ 7/ ;
pe ‘/1’ O :/dS n [Gz(P,P)V 5E2Z(p)_E22(P )v SGZ(p,p)],
S

" Hae) (8.1.53)
pE Vs 2z\P ~t j / v
pEVL, 0 } - / ds' 7 - [Ga(p, PV sHax(p) — Haa(p') V' G, P))-
S
(8.1.54)

In the above, Ga{p, p) is the two-dimensional Green’s function for region 2.
It need only satisfy (49) and need not be of the form (51) (Exercise 8.6).

In the above, E;, and H,, and their normal derivatives are the unknowns.
Subsequently, the extinction theorem can be used to write the integral equa-
tions as

0=5:(p) - [ a5'5 {G(p.0)) 7", B
S

_ [ Elz(
_le(

!
i’ V'sca(p,p')}, pEVe (8.155)

and

f af / ! -E Z /
0= /dS 7 {Gz(p,p)Vs sz%f"
4 L
E.(p')
_sz(P'

]
]
]

V' sGa(p, p’)} , pe€V, (8.1.56)
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where S;(p) = [%%Gl(p, P =0),-ItEGi(p, p' = 0)] * is the source field
in region 1.

Notice that the above consists of four integral equations with eight un-
knowns, E;;, H;, and their normal derivatives on S. Therefore, the boundary
conditions have to be imposed on S to eliminate four of the unknowns. To
this end, we require that the tangential fields be continuous. Then,

Ey, = E,,, Hy,=H,,, on & (8.1.57)
Furthermore, it is necessary that
X By =10 x By, X H, = xHy, on S (8.1.58)
Hence, from the equation [see Equation (2.3.17), Chapter 2]

Es = k%[kZVSEZ + w/J'Vs X Hz]: (8159)
s

and fi x (Eq, — Eg,) = 0, we have (see Exercise 8.7)

R kz kz 2
n- VSHZZ = — (——iﬁ- - 1) (2 S X Vs)Elz + #1k§sﬁ . Vsle.
wiy \ ki, Haki, (8.1.60)

Furthermore, from the duality principle,

. k, (k2 k2
- VsE2z = w_:z (;c—?- - ) (2 - X Vs)le + :;kgsﬁ . stlz' (
s Is 8.1.61)

Equations (60) and (61) can be combined as

7 - VSEZZ v Elz N - VsElz
[ﬁ‘vsHu] =M {le] N [ﬁ'VsHu ’ (8:1.62
where Mu = M22 = N12 - NZI = 0:
k, (k2 1k2
M= 22 (F2s 1) 5. 4 = 172
12 s (k%s 1) Z-1 X VS, Nu Ezk%s’ (8163&)
k. (K2 paks
My =——2{-22_1]3axV, Nyp==—2 1.
21 Wiz (k%s > Z2:1M X Vs, 22 ,UZk%s (8 1 63b)

By doing so, and making use of (57) and (62) in (56), then
! INRT 'fLI * V,sE z P' A !
/ ds {Gz(p,p N [n : V’sHllep'” — [ ViGa(p, p')
5

~Galp, PV - [fﬁ%ﬁ%]} =0, peVi (8.164)
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In addition, from (55),
! / 7 vlsElz(p’)
/S ds {GI(P,p) [’le . Vlsle(P’)
. E.(p
- VG o) | o) |} =80 pev 1)

Equation (64) and Equation (65). together constitute two vector integral equa-
tions with two vector unknowns. In (64), M, being nondiagonal, couples the
TE and TM fields together. But if k, =0, the TE and TM fields are decou-
pled again, and the problem reduces to two scalar problems (also see Chuang
and Kong 1982; Wang and Chew 1989).

§8.2 Solutions by the Method of Moments

Given the integral equations and the boundary conditions, we can solve
for the unknown surface field. Then, with the surface field known, the field
everywhere can be calculated. The solutions of the integral equation, as
such, are pertinent to many scattering problems. Unless the surfaces coincide
with some curvilinear coordinate system, the integral equations in general
do not have closed-form solutions, and more often than not, the unknowns
have to be solved for numerically. Therefore, we shall illustrate the use of
two methods, the method of moments (Harrington 1968) (also known as
the method of weighted residuals; see Chapter 5 for refercnces), and the
extended-boundary-condition method (Waterman 1969, 1971) (also known
as the null-field approach) to solve such integral equations.

§88.2.1 Scalar Wave Case
The integral equations in (8.1.12a) and (8.1.12b) can be written symbol-
ically as

Li(r,0) 7 - Vi (r') + Liz(r, ') ¢1(r") = Pine(r), r €V, (8.2.1a)
Lo(r, ')A - V'go(r') + Laa(r,r") ¢2(r') = 0, re Vv, (8.2.1b)

where the integral operators are

Ly(r, ) = /dS’ a{r,v), L= —/dS’ 7 Vg (r,r'), (8.2.2a)
s .3

Log{r,r') = /dS’ gao(r,r'), L= —/dS’fL’ - V'ga(r,T). (8.2.2b)
; s

f- V¢ and ¢ are independent unknowns. But the boundary conditions given
by (8.1.13), imply that (1a) and (1b) become

[,11(1',1‘/) ﬁl . vl¢1 (I‘I) + £12(I‘,I‘1) ¢1 (I") = qSinc(r), re ‘/2, (823&)
%ﬁﬂ(r, ')A Vg (r') + Loa(r, ') 1 (r') = 0, reV,. (823b)
2 .-
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To solve (3a) and (3b) with the method of moments (Chapter 5), we let

N N
A Vi) =Y anfialt), $1(c) = bufan(r'), (8.2.4)
n=1 n=1

where fin(r') and fin(r') are known basis functions. Then, (3a) and (3b)
become

Z%Cu(l‘ ) fin(r') + Zb La2(r,1") fon (r') = pine(r), 1€ Vi,

n=1 n=1 (8.2.5a)
Zam — Lo (r, 1) fin (r') + Zb Loa(x, ') for(r') = reV.
P2 =1 (8.2.5b)

In (4), we assume the unknown #i- V¢ (r') is approximated well by fi,(r')
and ¢1(r') by fen(r’). Then, after multiplying (5a) by wim(r) and (5b) by
Wy (T), where m = 1,..., N, and integrating over r, we obtain

Z {wim(r), L1:(r, r ) fin(r +Zb {wim(r ), L1o(r, r)on( )

n=1

—(wlm(r)7¢1nc( ), m=1,...,N, (8.2.6a)

=

Qn <w2m( ) ['21(1‘ r’ fln > Zb ’wzm [:22(1‘ l')fzn(l‘))

=0, m=1,...,N. (8.2.6b)

The above forms 2N linear algebraic equations which yield the 2N un-
knowns, ay’s, n = 1,...,N and by’s, n = 1,...,N. In Equation (8a), we
can define wy,(r) anywhere in V, and wy,(r) anywhere in V;. Often, the
solution is most stable if r is chosen close to S. But if r is chosen to tend to
S from either V] or V3, then the singularity of the Green’s function has to be
properly accounted for.

To see this, notice that if r € S, the integral arising from the operator
[:12 and Lzz, i.e.,

[asiowra ister), res (8.2.7)
S

does not converge, because the kernel

- V(e ') ~ O/l —¢'|?), |r—r|—=0 (8.2.8)
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T

Figure 8.2.1 Diagram for evaluating the residue of a divergent inte-
gral.

gives rise to a divergent integral. Such integral equations are also called
singular integral equations (see Baker 1977). However, the principal value of
the integral and its residue exist, for if r € 5, we can deform the r’ integral
around r and evaluate the integral in the limit when a — 0 as shown in Figure
8.2.1. Therefore,

= /dS'qb(r') 7 Vg(r,r) =][dS’q§(r’) #'-V'g(r,r’)+Res, (8.2.9)
5

S

][ ds’

5
denotes a principal value integral, while “Res” denotes the residue:

where

Res = lim / as' ¢(r') A - Vg(r,r') = ¢(r) lim / as'da’ - V'g(x,x').
As As

(8.2.10)
Evaluating the last integral in (10) with r as the origin yields
/2 2
llli_l'ltl) as'#' - V'g(r r’) //a sm9d9d¢ (8.2.11)
As
Therefore,
I(r) = —%d)(r) + ][ dS' p(r') 7 - V'g(x, 1), (8.2.12)
s

We can use such principal value integrals to derive integral equations alter-
native to (8.1.12) (see Exercise 8.8). Note that the residue will have different
signs if r approaches the surface S from different sides. In other words, I(r)
is a discontinuous function of r when r moves from one side of surface S to
the other.
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Figure 8.2.2 In the boundary-element method, a smooth surface
is approximated by a union of triangles. In two dimensions, a line
contour is replaced by a union of line segments.

In (2a) and (2b), if r and r' are both defined on the surface S, it can be
shown that £;; and L) are symmetric operators, while £, and Ly, are skew
symmetric operators. Therefore, if one chooses wi, = Wor, = fim = fom, a8
in Galerkin’s method (Chapter 5), then the resultant matrix representations
of the operators in (6a) and (6b) are either symmetric or skew symmetric (see
Exercise 8.9). On the contrary, if wy,, and ws,, are chosen to be Dirac delta
functions, then the solution corresponds to that obtained through the point-
matching method or the method of collocation (see Chapter 5 for references).

When the surface S is approximated by a union of triangles or polygons
(see Figure 8.2.2), and the expansion functions fi, and fo, are defined over
a finite domain (subdomain), e.g., only over the triangles, the method is also
known as the boundary-element method (Brebbia 1978). The boundary-
element method is particularly suitable for arbitrarily shaped objects. The
subdomain of each element is locally plane, and the choice and construction
of basis functions for a subdomain are a lot easier.

§88.2.2 The Electromagnetic Case

Having described a solution technique for the scalar integral equation, we
ponder next on the electromagnetic (vector) case. Fortunately, the same idea
is easily extended to the vector case for Equations (8.1.28a) and (8.1.28b).
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To do this, we let

N N
A X E(r) =) anen(r), A x Hy(r') = bohn(r), (8.2.13)
n=1 n=1

where e,(r') and h,(r') are basis functions that can approximate the vector
fields AX E;(r') and A xH; (r') on S fairly well. Testing or weighting functions
wim(r) and won(r) can be used as in the scalar case.

When the weighting functions are defined over S, as the expansion func-
tions have been, the singularity of the dyadic Green’s function must be prop-
erly accounted for. Even though the integral

L = /dS’E(r, ')A xH{), res (8.2.14)
s

in (8.1.28) seemingly does not converge, it always yields a unique value either
via a principal value integral or a vector potential approach (see Exercise
8.10), because 7 x H(r’) is an equivalent electric current sheet which produces
an electric field that is continuous across this current sheet. However, the

integral
L = / dS'V' x G(r,r') - # x B(r'), res (8.2.15)

s

is undefined, because 7' x E(r') is an equivalent magnetic current sheet that
produces an E field whose tangential component is discontinuous across the
surface §. We shall elaborate this further.

For an unbounded homogeneous medium,

—_ - VV = V'V .
G(I‘,I‘ ) = (I + F‘) g(r,r’) = (I =+ kz ) g(r,r'), (82163)
and . B B
V' x G(r,t') =V xIg(r,r')=Vg({r ) x L (8.2.16b)

Therefore, Equation (15) becomes

L= /dS’ [Vig(r,r")] x [7 x E(r')]. (8.2.17)
5

On multiplying the above by 7ix, and after using the appropriate vector
identity, we obtain

AxT = / 45" 5 x {[V'g(r, )] x [ x B[}
S

_ / dS' {7 x B(r)A- Vg(r,r') — [ - & x B@)] Vg(r, ')}

J _(8.2.18)
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Figure 8.2.3 A triangle with §;; defined on the edges.

Then, using the procedure of Equations (9) to (12) (see Exercise 8.10),

Ax Ty = %n x E(r) —][dS’ # x B(r) A - Vg(r,r')
S
+/dS’ [fi- 7 x E(r')] V'g(r,r') (8.2.19)
S

The first term in (19) is the singularity effect of the integral in (19). The
second term in (19) is well defined after the extraction of this singularity. In
addition, since the singularity of a dyadic Green’s function is a local effect,
this technique can also be applied to the integrals in Equations (8.1.42a) and
(8.1.42b).

When the boundary-element method is applied to the vector problem,
the surface unknowns # x E and # x H are expanded over each triangle
of a boundary element. But since # X E and # x H represent currents,
these currents should be continuous across contiguous elements on a surface
approximated by a union of triangles (see Figure 8.2.3). For example, we
may want the current components normal to the edges of the triangle to be
continuous so that no charge accumulates at the edge of the triangle. More
specifically, 74 x H, which is the electric current on a triangle, can be expanded
as

3. =) JuNi(z,y), (8.2.20)

i=1

where zy is the plane of a local coordinate system that contains the triangular
patch, and N;(z,y) is a shape function with value 1 at the ¢-th node and zero
at the other nodes (see Figure 8.2.4). Also, J, is the value of J, at the
i-th node, where ¢ ranges from 1 to 3. Hence, J; can be decomposed into
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TNi(x,y)

Figure 8.2.4 The shape function N;(z,y) defined as 1 at one node,
zero at the other nodes.

components §;; which are unit vectors along the edges of the triangle, as
shown in Figure 8.2.3. As a result, the current at the i-th corner of the
triangle can be expanded as (see Angkaew et al. 1987)

Jy = ai§,;j + b; 8k, (8221)

where, by simple vector algebra,

™

2 (8k X i)

_ 2 (8 xJa)
o= -7 T\ = 7r oA
A (Ski X sij)

© . (§1_7 X gki),
and 2 is normal to the patch surface. With (21) and (22) in mind, (20) is
rewritten as

(8.2.22)

I 8

3
3, = [$aNu(z,y) + $2Na(z,y)l, (8.2.23)
i=1
where
Ny = ;Mv Ny = M’ (8.2.23a)
z - (ski X Sij) z- (sij . Zski)
b =28k X Jsis Pia=Z2 5 x T (8.2.23b)

Note that ¢;; and ¢ are the normal components of J (the value of J,
on the i-th node) on the 3; and §; edges respectively. Furthermore, these
unknowns are shared by contiguous elements sharing the same edges of the
triangles. In this manner, the currents normal to the edges of the triangle are
easily rendered continuous from one triangular element to another triangular
element, and this method can be used to expand the unknown currents 7 x E
and AxH on a triangular patch on S. Subsequently, the matrix representation
of the integral operator for the vector electromagnetic field can be obtained
(see Exercise 8.11). : -
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For the two-dimensional case, the integral Equations (8.1.64) and (8.1.65)
may be written as

Lu(p,p) - 9(p) + Li2lp,p) - 9(p) =Si1(p), P €S, peVs,
(8.2.24)

Lai(p, p)) - 9(p) + Lazlp, p) - $(p') = 0, pPES peV.

(8.2.25)

In order to convert the above into matrix equations, we expand %(p’} and
¢(p') in terms of basis functions and find the matrix representations of the
integral operators. For example, ¥(p’) and ¢(p’) can be expanded as

N N
Y(P) =D B(0) an, 6(p) =) Ealp)bu, (8.2.26)
n=1 n=1
where . ) 0
= (N — | JinlpP
g.(p) = [ " gzn(p,)] : (8.2.26a)

Note that in general, we have to expand a vector in terms of a basis set of
matrices in order to ensure completeness. For example, if By, = Y a,g1.(p')
n

and Hi, = Y Bngon(p’), the proper expansion for [Ey,, Hy,}' is (also see

Exercise 8.12)
[IP?I] _ ; [gmép’) an(()p’)] , [;:] - Zﬂ:gn.%. (8.2.27)

On substituting (27) into (24) and (25) and weighting the equations by
wl(p), where

W:n(p)=[w1m<”> 0 ] pes,

0 Wam(P)
we obtain
N N
Z'I—‘llm"_l ‘a, + EEIZmn ) bn = Slma m=1,... )Na (8'2283’)
n=1 n=1
N N
LDotmn-8n+ Y Logmn-ba=0, m=1,...,N, (8.2.28b)
n=1 n=1
where _ _
L'ijmn. = <W:n(p),Lij(pa PI)’En(pI» (8-2'29)
is the matrix representation of the operator iij and

Sim = (W,(p),S1(p))- (8.2.30)
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The system of linear equations in (28) can be solved for a, and b,. Once
they are found, the surface fields follow from ¢{26). Then, knowing the surface
fields, we can find the field everywhere via the use of Equations (8.1.50) to
(8.1.54) in the previous section.

As a final note, firstly, the inner product in (29) usually involves double
integrals. Moreover, if p and p’ are both on the surface S, the singularities
in 72 - V,Gi(p — p') have to be properly accounted for, as has been discussed
in Equations (7) to (12). Secondly, if W} (p) are chosen to comprise Dirac
delta functions, then the method corresponds to the point-matching method.

§68.2.3 Problem with Internal Resonances

The surface integral equations discussed previously are easily specialized
to impenetrable scatterers. For instance, if an impenetrable scatterer has
a Dirichlet boundary condition of ¢1(r) = 0 when r € S, then Equation
(8.1.12a) becomes '

Dine(r) = /dS' g, A -Vii(r), revs. (8.2.31)
5 .

Note that Equation (8.1.12b) is irrelevant now because ¢o(r) = 0 inside an
impenetrable scatterer. Now, if (31) is imposed on r € S, severe errors could
occur because (31) imposed on S may have a homogeneous solution. In other
words,

0= /dS’ a(r,e)d - V¢i(t'), res (8.2.32)
5

could have nontrivial solutions for ¢:(r), namely, at the internal resonant
frequencies of the cavity formed by V, (Werner 1963; Schenck 1968; Mitzner
1968; Burton and Miller 1971; Bolomey and Tabbara 1973; Jones 1974; Mittra
and Klein 1975; Mautz and Harrington 1978, 1979; Morita 1979; for a review,
see Peterson 1990). At these internal resonances, the integral operator defined
in (32) has a nonzero nullspace. Hence, its conversion to a matrix form via
the method previously described yields an ill-conditioned matrix (see Exercise
8.13). '

In addition, the surface source # - V@1 (r) on S generates no field outside
V; at resonance [see Exercise 8.13(e)]. Also, from reciprocity (see Chapter 1,
Exercise 1.13), the reaction of this surface source with @inc(r) is zero since
Pine(r) is generated by some sources outside V. In other words,

[ 48 tuctayit - Vrta) = 0 (8.2.33)
S

at the resonant frequencies of V3 and #- V¢, (r) is the resonant surface source
on S. Because of (33), the incident field is orthogonal to the resonant surface
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source. Therefore, in principle, this field does not excite the resonant surface
source (see Exercise 8.13).

So, at resonances, the resonant surface sources 7 - V¢ (r) constitute a
nullspace of the integral operator defined in (32). Moreover, the excitation
coefficient of this resonant current is zero because it is orthogonal to the
incident field as given by (33). What then is the amplitude of the resonant
current of the scattering problem at the resonant frequency of the cavity
formed by V27 As it turns out, its amplitude is usually nonzero. In fact, it
is similar to the case of finding the value of sin(z)/z at z = 0 (which has
a removable singularity at z = 0) [see Exercise 8.13(d)]. Consequently, a
numerical approximation of (31) is difficult to solve because the “poles” and
“zeroes” do not cancel precisely.

A plethora of techniques have been proposed to remove this resonance
effect in seeking the-solution to (31). For instance, one way is to use the
combined-field integral equation approach (see Exercise 8.14; also Mitzner
1968). Yet another way is to avoid imposing (31) only on S, but to impose
(31) for all r € V,. Then, the equation

0= /dS' A qi(r, r)Vé(r), allrel, (8.2.34)
5

will not have a nontrivial solution, since the field generated by the surface
source 7t- V'¢1(r’) is forced to be zero everywhere in V3, precluding an internal
resonance. This is precisely the spirit of the extended-boundary-condition
method to be discuss in the next section. In this manner, Equation (31)
becomes

Ginc(r) = /dS’ ' gi(r, )V (r)), re Vs, (8.2.35)
J .

which will avoid ill-conditioning. Omne way of achieving (35), then, is to
impose it in a neighborhood interior to S. For example, if the point-matching
method is used to solve (35), we will point-match it on S as well as on points
just slightly interior to S. This will rid (35) of internal resonances for most
practical purposes (see Exercise 8.15).

The scattering solution of a penetrable scatterer governed by (8.1.12) is
nontrivial when ¢;,.(r) = 0, implying a nonzero nullspace. Here, the phys-
ical meaning of the nontrivial solutions corresponds to the resonant modes
of the open resonator, formed by two regions with different wave numbers,
analogous to a dielectric resonator. Because of radiation damping, however,
the resonant frequencies of this open resonator are complex. In other words,
the poles of the structure are not on the real w axis of the complex w plane.
Therefore, for a time harmonic solution where w is always assumed purely
real, the integral operator corresponding to (8.1.12) has no nullspace. Hence,
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Figure 8.3.1 The surfaces for the extended-boundary-condition
method or the null-field approach. V] is the volume outside S, while
V5 is the volume inside S.

the problems that plague the solution of (31) do not exist, unless the @ of
the resonance mode is so very high that the poles of the structure lie very
close to the real w axis. (Note that the above discussions apply to the vector
electromagnetic case too.)

§8.3 Extended-Boundary-Condition Method

The extended-boundary-condition (EBC) method, developed by Water-
man (1969, 1971), is also known as the null-field approach. It is an alternative
to solve the surface integral equation. In this method, the integral equations
are imposed not on the surface S, but on some surfaces S; and S, away from
S as shown in Figure 8.3.1, in order to simplify the solutions. In this section,
we shall discuss this method for solving the surface integral equation for the
scalar wave case first and discuss the electromagnetics case later.

§88.3.1 The Scalar Wave Case
The scalar integral equations are

¢inc(r) = /d‘sl [gl(r7 rl) ﬁl " vl¢1(r1) - ¢1(rl) ﬁl -'V'gl(r,r’)], rec ‘/Zv
J (8.3.1)

0= /dS’ [ga(r, T) A - Vho(x) — ¢o(x) A - V'go(r,¥')], 1€ W,
4 (8.3.2)

where Equation (1) is valid for r anywhere in V2 bounded by S and Equation
(2) for r anywhere in V; outside S. As such, it is often convenient to impose
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the integral equation in (1) on S, a spherical surface in V3, and to impose
integral equation in (2) on S}, a spherical surface in V;. This is further mot;-
vated by a subsequent simplification in the solutions of the integral equation.
In this method, the integral equations are imposed on surfaces away from the
actual surface of the object, and hence, its name, the extended-boundary-
condition method.

The integral equations on the spherical surfaces simplify if spherical har-
monics are used in the expansion of the field. For instance, via the addition
theorem, the Green’s function in a homogeneous medium can be expanded
as (see Exercise 8.16)°

g(r,v') =ik Pn(k,r5)Repn(k, o), (8.3.3)

where ,(k,r) represents an outgoing wave spherical harmonic, and
Rer(k,r) is the regular part of ¥,(k,1).1° r, represents the larger of the
r and r’, and r. is the smaller of the r and r’ in magnitudes. In addition,
since the incident wave is regular about the origin, it can be expanded as the
regular spherical wave functions, i.e.,

¢inc(r) = Z an%e'w‘n(kly I‘). (834)

n

As such, Equations (1) and (2) become

3" anRetn(ky, 1) = iky S Regpa ki, 1) / 45" [alkn, 1) 7 - V'eha (')
n n 5

= i(r) A - Vo(kr, )], T E S, (8.3.5)
0 = ik, Zz/)n(kz, r) / dS' [Reyn(ka, ') ' - Vgho(r)
n S .

— o(r') A - V'Rep(ko,¥)], 1€ 51
(8.3.6)
In the above, (5) is actually valid for r anywhere in the volume bounded
by S;, and (6) is actually valid for r anywhere in the volume outside S;.

Consequently, from the orthogonality of the spherical harmonics, we deduce
that '

an = iky /dsl [Yn(lor, ) - Vo (x') = 1 (x') A - Vi (b1, 1)), Vi,

s (8.3.7)
0 = ik, / dS' [Repy kg, ') ' - Vo (r') — ¢o(r') A/ - V'Retpy (kz, '), V.
(8.3.8)
S .

9 The factor k in (3) is replaced by 1/4 in two dimensions.

10 1f 4 (k,T) consists of a Hankel function, which is singular at r = 0, then Rey,(k,r)
consists of a Bessel function, which is regular at r = 0.
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Observe that the integral equations are greatly simplified now and do not
involve r at all. To solve this new integral equations, we expand the surface
unknowns 7 - V'¢(r’) and ¢(r') in terms of a basis set to convert (7) and (8)
into matrix equations. A clever way of expanding the surface unknowns is to

let
$2(r)) =D amRepm(ka, '), (8.3.9)

W Vhy(r) =Y Bt - V'Retpm (Ko, T'). (8.3.10)

But this is only rigorously valid if Rewm (k') and & - V'Rem(ko,1') are
complete on S. As it turns out, they are complete except at the internal
resonances of the cavity formed by V; with wave number k, (see Exercise 8.17;
also see Waterman 1969). In this case, it may seem obvious that oy, = fm,
but this may be inconsistent with (8). To check this consistency, we use (9)
and (10) in (8) to yield

0=3"%n / dS' [Rewn(ka, ') & - V' Retprn (ko 1]

S
~Y o / dS' [Rewhm (Ko, &) # - V'Retp(ho, )] (8.3.11)
m s

At this point, it is not obvious at all that oy, should be §,. However, by
integrating

V' [Rewn ke, t') V' Retpm (ka, r') — Retpn(ka, ') V' Repy (K2, 1))
(8.3.12)

over a volume V bounded by S and S,, and applying Gauss’ theorem and
the fact that (12) is zero and that the integral over S; is zero due to the
orthogonality of spherical harmonics on a spherical surface, we conclude that
(see Exercise 8.18)

/ dS' [Rewa by, 1) - V'Retp(ka, )] = / 4S' Retpm (g, 1) 7' - V'Rethn (kz, 1),
s s

(8.3.13)
This, when used in (11), indeed implies that am = (. Hence, the reward
for the clever choice of expansion functions in (9) and (10) is that it solves
(8) immediately. As a result, Equation (7), with the use of (9) and (10), and
the boundary conditions (8.1.13), becomes .

: N ~f p
an = zklzam/dS’ [¢n(k1,r)n - V'Retp, (kg, ' p—j
m S

— Repm ke, ¥) A - Viepp(ky, ') | . (8.3.14)
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Then, Equation (14) is of the form

an = ZZ aanm: (8315)

where

Qum = Ky / s’ [wn(kl,r’) A V'Retpm ks, r')%
1
S

— Repm(ka, ') A - v'¢n(k1,r')]. (8.3.16)

Note that Equation (15) is in theory an infinite-dimensional matrix equation.
But in practice, o, is solvable from (15) in terms of an, the amplitudes of
the incident field, by truncating the infinite-dimensional matrix equation.

In the extended-boundary-condition method, the fields are extinct only
inside the circle S; and outside the circle S;. In actual fact, the surface
sources impressed on S have to extinct the pertinent field everywhere in-
side $ or everywhere outside S. As such, the extended-boundary-condition
method provides a solution which sometimes is an approximation of the ac-
tual solution, albeit such an approximation is very good in a number of cases.

Because the testing surfaces S; and S, are away from the surfaces in the
extended-boundary-condition method, the matrix equation (15) becomes very
ill-conditioned if the maximum distances of S; and S, from S are large. For
instance, this is the case for an elongated object or an object with high cor-
rugations. Physically, the ill-conditioning arises because the surface sources
on S generate fields which are localized in the vicinity of S for such surfaces
(in the case of a planar, corrugated surface, this would be an evanescent type
wave). Accordingly, information on § within such fields is greatly diminished
on S; and S,. Therefore, imposing the integral equations (1) and (2) on 5
and S, results in a set of ill-conditioned equations. {The convergence of the
Waterman EBC method has been studied by Bolomey and Wirgin (1974)
and Bates and Wall (1977).] Despite this, the EBC method is attractive for
many applications because it gives a simpler set of equations. It is particu-
larly convenient for a scatterer where the fields around it are expandable in
spherical harmonics, cylindrical harmonics, or Floquet modes (e.g., periodic
rough surfaces).

The EBC method is also easily adaptable to impenetrable objects. In this
case, we need to solve only Equation (7) with either the homogeneous Dirich-
let or Neumann boundary condition, or the impedance boundary condition.
By the same token as in (9) and (10), one can expand 7 - V¢(r) in terms
of A - VRetpy(kz, 1), and ¢(r) in terms of Ren(ky,r)."! But at the internal
resonance of the cavity formed by S, the set - VRe,(ka, r) or Re, (ks, r)is

11k, may be chosen to be k; in this case.
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incomplete on S as mentioned previously (see Exercises 8.17, 8.19). Then, the
Qnm matrix thus derived is ill-conditioned for quite a different reason from
those discussed in Subsection 8.2.3 (see Exercise 8.20). Hence, this internal
resonance can be overcome by using a complete set to expand the surface
sources (see Waterman 1969).

§88.3.2 The Electromagnetic Wave Case

- The extended-boundary-condition method is easily generalized to the vec-
tor electromagnetics case for solving the integral equations from (8.1.28) (Wa-
terman 1971; Barber and Yeh 1975; also see papers in Kerker 1988). The’
vector surface integral equations are

Bune(t) = [ 48" [iunsGa(e,¥) - # x Bu(e)

s
—V' x Gy(r,r) -/ x Ey(r')] , T € W,
(8.3.17)
0= /dS’ [iwpaGa(r, ') - 7' x Ha(r')
5
V' x Go(r,r') - 7' x Ex(r)] , T € Vi
(8.3.18)

In this case, the unbounded homogeneous-medium dyadic Green’s function
is expanded as [see Exercise 8.21 and Equation (7.3.40)]

G(r,r') =ik Y _ ok, 15)Repn(k, o), £ # I, (8.3.19)

where 1,(k, r)’s are vector wave functions for outgoing waves.

By the same token as (4), the incident wave is expanded as the regular
vector wave functions

Eino(r) = Y anRetpn(ky,T). (8.3.20)
Consequently, (17) and (18) become (Exercise 8.22)
ay = ikl/dS’ [iwpin k1, ') - 7' x Hy (')
5

= V' X pa(kr, x) - 7 x Eq (x)],
'(8.3.21)
0= ikz/dS" [iwpoRetpy (ke, T') - A' x Ha(r")
5

-V x §R€’(/)n(k2,l‘/) A % Ez(rl)].
(8.3.22)
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Next, we expand

WX Bp(r') = ) om#t! X Repm (k2,T), r €S, (8.3.23)

iwpgdt x Ha(r') = Z Bt X V' X Retpm(ke,x'), T €S, (8.3.24)

because 7 X Rep, (kz,1') and A/ x V' x Repm (ka, ') are complete on S (see
Exercise 8.23). Then, Equation (22) becomes

0= Z / dS' [BmRewpn (ka, ') - W x V' x Retpp(ka, 1')
ms

— V' X Retpy (koo ') - 7 X Repm(ka,T')].  (8.3.25)

To prove am = Bm, we take the volume integral of

AARRIAVAR Retpm(ka, T')] X Repn ko, r') + Repm (k2. ¥') ¥ V' x §Re¢n(é<:82.,31j’2)gj})

over a volume bounded by S and S; and note that the above is zero and that
the surface integral over S, vanishes for n +# m. Hence, we conclude that (see
Exercise 8.24)

/dS’ A [V x Repm(ka, 1)) X Rep, (ko 1')
s
= /dS’fL’ V' x Reapp(ke, 1)) x Repm ks, ¥')  (8.3.27)
5

or that aum, = fBm in (25) and then, in (23) and (24). Then, after making use
of the continuity of # x E and . x H on 5, (21) becomes

an = ik1 ) om / 48" (/o) - V' % Retpr(ka, 1) X Pl )
m 3

—# - Retpm (k1) X V' X Pk, 1))

=1y omQum, (8.3.28)
where
Qnm = kl/dS' [(ua/p2)? - V' % Rem(ka, 1) X Pn(kr, ')
s
— 7 Repm(ka, ') X V' X Pk, )] (8.3.29)

From Equation (28), we can solve for am’s which then yie.ld fche surface
unknowns. The matrix Equation (28) suffers from ill-conditioning for the
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same reason given for the scalar wave case when the object is elongated or
the surface of the object is convoluted. In addition, for impenetrable objects,
(28) suffers from resonance effects as in the scalar wave case.

§8.4 The Transition and Scattering Matrices

Once a scattering problem is solved, the scattered field everywhere can
be found. For instance, in the extended-boundary-condition method for the
scalar wave, once the o,’s are found in Equation (8.3.15) by truncating the
infinite-dimensional matrix equation, the surface fields are found using (8.3.9)
and (8.3.10). The scattered field from (8.1.9) then becomes

¢sca(r) =an1/1n(k:1,r) = Ziklam'l/)n(klyr) /dSI [%ed)n(kl,r’)
n nm S
A - V'Retpm (b, ') 22 — Rep (o, ') 7 - V'Re - i (Kr, r’)] .
P (8.4.1)
From the above, we readily deduce that

fa=—1)_ amReQum, (8.4.2)
m

where Qnm is defined in (8.3.16), and Re implies the “regular part of.” In

other words, ReQrm will convert all the Hankel functions in Qnm» into Bessel

functions. Consequently, from (8.3.15) and (2), we have

a=1iQ  «a,

£=—i(ReQ) - o,

(8.4.3a)
(8.4.3b)

where a, o, and f are vectors containing a,, &, and f, respectively, and Q
is a matrix with elements Qm,. On eliminating « in the above, we obtain

f=—(ReQ) Q" -a (8.4.4)

A transition matrix T can be defined to relate the scattered wave ampli-
tude to the incoming wave amplitude such that (Waterman 1969, 1971)
f=T:a, (8.4.5)

where

—=-1

T=-(ReQ)-Q .
Hence, the total field then becomes

o= Z[anﬂ?ez,bn(kl, l') + fnwn(kla I‘)]

= Z [an§R€¢n(k1, 1') + (Z Tnmam> ¢n(k17 I‘):| .

 (8.4.6)

(8.4.7)



460 INTEGRAL EQUATIONS

Notice that the preceding equation is the same as
o(r) = [Reyp'(ki,x) + ¥ (k1,r) - T] -2, (8.4.8)

where 1p(k;,T) is a column vector containing Yo k1, r).

If a scattering matrix S is defined which is related to T as

S=1+2T, (8.4.9)
then (8) becomes
(r) = |Rews'(ky, 1) — %z.b‘(k;,r)+ %w‘(kl,r) 5| a. (8.4.10)
Consider the fact that
Reipn (ky, ) = %1[1,1(/&1,1-) + %wn(—kl,r), (8.4.11)

i.e., a standing wave Ret,(k, ) can be written as a linear superposition of
an outgoing wave 33, (ky,r) plus an incoming wave 19n(—k1,r). Then, (10)
becomes

¢(r) = % [¥'(—k1,r) + ¥'(k1,1) - S] - a. (8.4.12)

Therefore, the scattering matrix S relates the amplitude of the scattered wave
to the incoming wave.

Using reciprocity, it can be proven that T is a symmetric matrix (see
Exercise 8.25). Thus,
T'=T, §'=58. (8.4.13)

Moreover, energy conservation implies that (see Exercise 8.26)

— e

§'.§=1, or §-5=1, (8.4.14a)

and L B
TN . T = —ReT. (8.4.14b)

The above are useful checks for the correctness of the T and S matrices when
they are computed. Finally, even though the T and S matrices have been
derived here using the EBC solution as an illustration, they can in theory
be defined once the scattering solution is known, regardless of the method of
solution.

£8.5 The Method of Rayleigh’s Hypothesis

A method very closely related to the EBC method is the method of
Rayleigh's hypothesis (Rayleigh 1894, 1897, 1907). Even though this method
does not involve integral equations, it is worthy of discussion because of its
close relationship to the EBC method.
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Consider the geometry shown in Figure 8.3.1; the field outside the surface
S; can be expanded in terms of the incident and scattered waves, which are

Bine(r) = ) anRerpy(ky, 1), (8.5.1a)
Goca(r) = Y fatpn(kr,1). (8.5.1b)

Note that we have expanded the incident field in terms of standing waves
but the scattered field in terms of outgoing waves. Next, the field inside the
scatterer is expanded again in terms of a standing wave of the form

$a(r) = Y anRetpn(ky, ) (8:5.2)

for r inside S,. In addition to this, Rayleigh’s hypothesis assumes that (1b)
and (2) are valid on S as well. But this is not at all clear because, in the
region bounded by S; and S, it is not obvious if all the waves are outgoing
as expressed by (1b). Moreover, in the region bounded by S, and 8, it is not
obvious if all the waves are standing waves.

In spite of this, we assume the validity of Rayleigh’s hypothesis and match
boundary conditions on S. Consequently, the continuity of the potential
implies '

Z[aﬂmewn(klv I‘) + fnwn(kly I‘)] = Z anéRelﬁn(kg,r), resS. (853)

Furthermore, the boundary condition on the normal derivatives given by
(8.1.13) yields

Z[anmﬁ - VRepn(ky, 1) + fuprft - Vipr(ky, r)]

n

= onpsfi- VReyy(ka,1), TES. (85.4)

To convert the above into matrix equations, we test Equation (3) by # -
VRey,,(ko, 1) and integrate over S to yield

S e [ dS- Reth (b r)Retpa (b, )
S

n

+fa / dS 7 - VReYn(ka, )b, (ki 1)
s

=Y o / dS - VRewn ko, r)Reth (ko r).  (8.5.5)
n s
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Similarly, we test Equation (4) by Rey,(k2,r) and integrate over S to yield

Z ani—;S/dS%e@bm(kg,r)ﬁ-V§R€1/Jn(k1,r)

+ 5,2 S/ dS Retb (ks 1) 7~ Vo ki, )
=> on / dS Repm (b2, 1) 7t - VRepn(ka,x).  (8.5.6)
n S

But the right-hand sides of (5) and (6) are equal as a result of (8.3.13).
Consequently, we have

Zan 1 & dS %e'l[)m(k%r)ﬁ : V%C"/)n(kly I')

D2
s

_ / dS - VRetm ks, r)Retpn (b, ¥)

s

=-St % dS Rep (kz, ¥) A - Vb (kn, 1)
2
S

- / dSt - VRetm(ka, t)n(kr,T) | . (8.5.7)

s

Note that the above is the same as

Z an%eQnm = - Z annm: (858)
which is the same as — —
ReQ -a=-Q -f. (8.5.9)
Consequently,
—1 -1 —t
£ (Q ) ‘ReQ"' - a, (8.5.10)
or the T matrix is
—_ —1 it -1
T — (Q ) . ReQ . (8.5.11)

Observe that Equation (11) is exactly the transpose of Equation (8.4.6)
derived by the EBC method. But from the reciprocity condition (8.4.13),
the actual T is a symmetric matrix. Therefore, the T matrix derived with
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Rayleigh’s hypothesis has formally the same error as that derived by the
extended-boundary-condition method, even when the Q matrices are trun-
cated (see Exercise 8.27).

The equivalence of EBC and Rayleigh’s method has led to much confu-
sion and controversy in the past (Burrow 1969; Millar 1969; Lewin 1970).
In particular, the equivalence of Rayleigh’s method to the seemingly more
rigorous extended-boundary-condition method has been used to establish its
legitimacy. However, it is easy to find counterexamples to Rayleigh’s hy-
pothesis in the high frequency limit. In this limit, a bouncing ray picture
of the waves clearly indicates the existence of incoming waves as well in V4.
Hence, Rayleigh’s method is sometimes an approximate method, as is the
EBC method as noted earlier.

The EBC method of imposing the extinction theorem on S; and S, does
not imply the extinction of the field everywhere in V) and V; respectively.
However, the exact solution of the surface integral equation yields surface
sources that extinct the appropriate field everywhere in V; and V,. This
explains the equivalence of these two methods and the same degree of errors
in both the solutions. Consequently, the ill-conditioning of the matrix in
Rayleigh’s method, which gives rise to poor results, is also due to the presence
of localized waves or evanescent waves for a highly corrugated or elongated
object. Despite its shortfall, Rayleigh’ method is attractive because of the
simplicity of its derivation compared to the EBC method. (It has been proven
for certain surfaces that Equation (1b) does not converge on S (see references
in van den Berg 1980).1%|

§8.6 Scattering by Many Scatterers

Once the T matrix for one scatterer is found, it can be used easily to
construct the solution of scattering by many scatterers. But when more
than one scatterer is present, there exists multiple scattering between the
scatterers. Nonetheless, by applying the translational addition theorem for
spherical harmonics or cylindrical harmonics, the solution to such a problem
is easily found. In this section, we shall consider first the solution of two
scatterers. Then, we shall derive a recursive algorithm for the solution of
N scatterers. The N scatterer solution has been presented by Peterson and
Strém (1973, 1974a), but the solution we present here will be in a different
light (Chew 1989; Chew and Wang 1990; Chew et al. 1990; Wang and Chew
1990; also see Kerker 1988).

888.6.1 Two-Scatterer Solution

When two scatterers are present as shown in Figure 8.6.1, we can expand
the incident field as

Ginc(r) = Rep '(ko, o) - a, (8.6.1)

12 The Rayleigh’s hypothesis method has been modified by various scientists, a review of
which is given by van den Berg (1980).
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Figure 8.6.1 T'wo scatterers in the presence of an incident field.

while the scattered field, as

Pscalr) = "»bt(koyrl) £+ d’t(ko, ry) - f;. (8.6.2)

Notice that in the above, the scattered wave from each scatterer is expanded
in terms of the outgoing harmonics expressed in the self-coordinates of the
scatterers. Fortunately enough, translational formulas exist both for cylin-
drical and spherical harmonics such that

P (ko, ;) = Reap (Ko, 15) - Tya, Ir;| < dyy, (8.6.3a)
P*(ko,r:) = P’ (ko, ;) 'Eji: [e;] > dyy, (8.6.3b)
§Re¢t(k0:ri) = §Re¢t(k07rj) E]z) V|r]|7 (863C)

where d;; is the distance between the O; and O;, the origins of the ¢ and
j coordinates (Friedman and Russek 1954; Stein 1961; Cruzan 1962; Danos
and Maximon 1965; Chew 1989; and Chew et al. 1990; also see Appendix
D). These formulas allow expression of the harmonic expansion of the field
in one coordinate system in terms of another coordinate system readily. In
general, ﬁﬁ = Rew;; where Re stands for “the regular part of” (see Exercise
8.28).

Then, using (3a) and (3c), the total field exterior to the scatterers ex-
pressed in terms of the coordinates of the first scatterer is

¢(r) = §R€’¢‘ t(kO: rl)'BlO‘a_i—th(kO, 1‘1)'f1+§Ret,bt(ko, rl)'alg'fz. (864)

The first and the third terms in the above can be viewed as the incident field
impinging on the scatterer 1, while the second term is the scattered field from
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scatterer 1. But if the T matrix of the first scatterer when it is isolated is
known, we can write a relationship between a, f1, and f; using this T matrix.
In other words,

fi = Tl(l) : [310 ‘a4 Qg fg] . (8.6.5)

Similarly, for scatterer 2, we have
f, = Tg(l) . [E2O -a+ Qg - fl] . (866)

In the above, Ti(l) is the isolated-scatterer T matrix for the i-th scatterer;
the parenthesized 1 indicates that it is the one-scatterer T matrix.

Equations (5) and (6) can be solved to yield

- = — -1 = — — —
fi = [T~ Ty @i Toqy 8] - Tiq) - [Bro + 812 - Toy - Bag) - 2,

(8.6.7)

f, = [T Ty - @ - Tugy -am]"l Ty - [ Bao + T - Trqay - Bug) - & '
Now, from (7) and (8), new T matrices are defined such that (868)
fy = Ty B a, (8.6.9)
£, = Taz) - By - a, (8.6.10)

where now, Ty is a two-scatterer T matrix. It relates the total scattered
field due to the i-th scatterer to the incident field amplitude when two scat-
terers are present. Notice that the equations for -_T—,-(z) can be derived by com-
paring (9) and (10) with (7) and (8). Moreover, the factor B;, is introduced
so that the T matrices are still defined with respect to the self-coordinates
of the scatterers.

§68.6.2 N-Scatterer Solution—A Recursive Algorithm

The previous subsection illustrated how the two-scatterer solution can
be constructed from the one-scatterer solution. This concept can be further
extended to find the scattering solution of n + 1 scatterers given the solution
of the scattering from n scatterers (see Figure 8.6.2). Now, if we define an
n-scatterer T matrix Ty, then the total field external to the n scatterers is
of the form

$(r) = Rep'(ko, o) - a+ _ 9*(ko,r:) - Tigny - Bio - & (8.6.11)
i=1

Similarly, the (n + 1)-scatterer solution has the form

n+l

¢(r) = Rexp'(ko, o) - a+ Zil’t(ko, r;) 'Ti(u+1) B2 (8.6.12)

=1 _
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Figure 8.6.2 A recursive algorithm can be derived such that the
scattering solution from n + 1 scatterers can be obtained from the
scattering solution of n scatterers.

The preceding equation can be written more suggestively as

(r) = Rep*(ko, To) a+Z¢ (Ko,:)  Tigna1y - Bao - @
+1/’ “(ko, Tnt1) - Toti(ns1) - Bniio-a.  (8.6.13)

Now, the first and the last terms in Equation (13) can be thought of as
incident fields impinging on the i = 1,...,n scatterers. Therefore,

Ti(n+1) 'Bio'a = Ti(n) 'Bio‘ ﬁ + Gt 'Tn+1(n+1) : En+1,o] ‘a, (8.6.14)

where we have used the translation formulas (3) to translate the last terms to
the global coordinates ro. But since T,y - B;, is defiried only for a source out-
side the smallest circle centered at ro = 0 and circumscribing the n spheres,
the (n 4 1)-th scatterer must be on or outside this circle. In other words, the
distances of the scatterers from ry = 0 have to be ordered.

Furthermore, the scattered field amplitude from the (n + 1)-th scatterer
is due to the scattering of the incident field from the other n scatterers via
the isolated-scatterer T matrix. Hence, the scattered field amplitude due to
the (n + 1)-th scatterer is related to the other field amplitudes as

Tn+1(n+1) : B’n.+1,0 a= Tn+1(1 n+1 ot Z Olnt1 Z(n+1) 5101| Ca.
(8.6.15)
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Consequently, using (14) in (15), we have

n
Trriw+1) * Briro = Tatiy - [ﬁn+1,0 + Zan+1,i . Ti(n) Bio

+Zan+1,z' in) ﬂzo aO,n+1 Tn+1(n+1) .Bn+10:| (8616)

Then, after solving this equation for Tn+1(n+1) -Bn +1,0, We obtain

: -1
n
Tn+1(n+1) . En+1,o = I:i =Ty Za—n+1,i . Ti(n) Bio - a0.n+1]

i=1
—_— — n —
< Thyqy |:ﬂn+1,0 + Zanﬂ,i : Ti(n) : ﬂio] . (8-6-17)
i=1
But from (14), we have

Titm+1) - Bio = Ty - Bio - L+ Copr1 - Trai(ns1) - Brsrol- (8.6.18)
Therefore, Equations (17) and (18) together constitute the recursive relations
enabling one to calculate the Tjny1y - B;, matrices, 2 = 1,...,n + 1, given

the T,(n) ﬁw matrices, 4 = 1,...,n. Therefore, given the knowledge of the
isolated-scatterer T matrices, the N-scatterer solution is constructed recur-
sively, starting from the one-scatterer solution. In this manner, only small
matrices determined by the dimensions of the T matrices must be dealt with
at each recursion. Consequently, only a small amount of computer memory
is required at each recursion, which reduces the number of page-faults in a
virtual memory machine.

In the above, if there are N scatterers, and the field around each scatterer
is approximated by M harmonics, there are altogether NM unknowns. In
this case, Ty - Bp-ain (11) is an M element column vector. But when the
scatterers are small, M, the number of unknowns on each scatterer, can be
kept small. On the contrary, the number of terms in the translation formulas
should be large enough to maintain their accuracy. In other words, Tim) - By
need not be square—it should be a M x P matrix where P is la.rge enough
to keep the translation accurate.

In view of this, the dimensions of the matrices in (17) and (18) are indi-

cated as
-1

MxP MxM n Mx M MxPpP PxM
o — —
Tn+1(n+1) : ,Bn+1,0 = n+1(1) Z Qnyli” z(n.) .Bzo Cont1
n
“Tasin) | Basrot Zan+1,i Tin) Big| »  (8.6.19)
N o’ N—— =1 N N
MxM MxP MxM MxpP
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Tim+1) Bio = Ti(n) - Bio +(Tiny - Bio* ®ont1) * Trt1(nr1) - Bnaro -

MxP MxP MxP PxM MxP

(8.6.20)

In the above, Ti(n+1) . ﬁz‘o can be regarded as the function to be solved
for; it is an M x P matrix. (The dimensions of the matrices are indicated
in the equations above.) Notice that the number of floating point operations
required to multiply an M x P matrix with a P x M matrix, oran M x M
matrix with an M x P matrix is equal to M2P. But since M < P, the other
matrix multiplications and inversions are subdominant. Therefore, at each
recursion, the number of floating point operation is O(nM 2P) after counting
the dominant matrix multiplications in (19) and (20). Consequently, after
applying the recursion relations to N scatterers, the number of cumulative
floating point operation is O(N2M?2P) (Exercise 8.29).

The N-scatterer problem is also expressible as an N M unknown problem
by solving NM linear algebraic equations. This would require O(N*M?)
floating-point operations, however, if these N M linear algebraic equations are
solved with Gauss’ elimination. On the other hand, if the conjugate gradient
method is used here, O(N*+*) algorithm (where o depends on the condition
number of the matrix) is possible. But still, the conjugate > gradient method
is an iterative procedure that solves the matrix equation A -x = b with a
fixed right-hand side. Therefore, it has to be restarted if the right-hand side
of the equation changes, and if the incident angle of the wave changes, the
equation needs to be solved again. However, the preceding algorithm derived
is independent of the incident angle of the incident wave. The reduction
in computational effort here can be traced to the fact that the og; or ﬁij
matrices are the representation of a translation group.

The recursive relations given by (19) and (20) can be further manipulated
to a different form by letting @nt1; = Gn410 * Bo;- Then, (19) becomes

n -1
Tn+1(n+1) 'En+1,0 = [i - Tn+1(1) c Q10 (Z Em ’ Ti(n) ' Bm) ; a&nﬂ}
i=1

'Tn+1(1) : [En+1,0 + Qny10° (Z Eo;‘ : Ti(n) 'Eio>:| : (8'6'21)
=1

Then, an aggregate T matrix for n scatterers can be defined such that

n
T(n) = Zﬁoz' - Tim) - Bio- (8.6.22)
i=1
And (21) becomes
T B I_-T — = = -1
Trtita1) *Brrro = [I = Lar1)  Ant10° T(n) aO,n+1]
“ Ty - mnﬂ,o + Qnt10° ?(n)] . (8.6.23)
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Figure 8.7.1 The one-interface problem for defining the T matrices
for the incoming wave case.

Moreover, on multiplying (20) by B,; and summing over i from 1 to n, we
have

?(1L+1) = ?(n) + [B0,11+1 + ?(n) ) a—O.n+1] * T17.+1(1L+1) : Bn+1,0' (8624)

Now, Equations (23) and (24) constitute the recursion relations expressing
T(n41) in terms of T(,y. Furthermore, when M multipoles are assumed for
each scatterer and P harmonics used for the translation formulas, a count
shows that the above is an NMP? algorithm. Consequently, if M and P
could be kept small, this is a very efficient method of calculating the scat-
tering from many scatterers when N is large. Moreover, an arbitrary shape,
inhomogeneous scatterer can be divided into N subscatterers, and its scat-
tering solved by such an algorithm. (The above concepts are easily adapted
to the vector electromagnetic scattering problems.)

§8.7 Scattering by Multilayered Scatterers '

Thus far, how the T matrix of a single scatterer and many scatterers
could be derived recursively has been shown. This concept can be extended
to the case of a multilayered scatterer. To do this, it is expedient to elucidate
the physics of the scattering at each interface. So, first we shall derive the
T matrices for the one interface problem and, ultimately, derive the multi-
interface problem from it. Although this solution was originally presented by
Peterson and Strém (1974b, 1975) and Wang and Barber (1979), the solution
here is considered in a more general sense.

§§8.7.1 One-Interface Problem
For the geometry shown in Figure 8.7.1, the field external to the scatterer
is of the form

¢(r) = Rewp'(ko, 1) - a+ 3 *(ko, 1) - Rox - &, (8:7.1)
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Figure 8.7.2 The one-interface problem for defining the T matrices
for the outgoing wave case.

where Rg; is a matrix equivalent to the T matrix previously defined. In
keeping with the spirit of Chapter 3, it is called the reflection matrix here,
and T is reserved for a transmission matrix in this section. In addition, the
field internal to the scatterer is expressible as

d’tra = §Re"vbt(k:lvr) e (872)

where « is a column vector containing om’s. This internal field is solvable
via the EBC method from (8.3.15), which implies that

—-1

iQ-a=a, or a=-iQ -a (8.7.3)
Next, we define a transmission matrix such that
bira = Re?(ky,T)  Tor - 3, (8.7.4)
where _ .
To1 = —iQ (8.7.4a)

Now, consider the case where the field is incident at the interface from
the inside, as shown in Figure 8.7.2. The incident wave in this case is the
outgoing wave. Then, the field internal to the scatterer is of the form

B(r) = Gine(r) + Dsea(T) = Yi(ky,r) - a+ Reapt(ky,T) - £. (8.7.5)
And the field external to the scatterer is
dira(r) = Y (ko,T) - . (8.7.6)
The above problem is again solvable by the EBC method (see Exercise 8.30).
Therefore, the waves are
d)(l') = ¢t(k17r) -a+ §R611Z’t('k;1)’--) * E1() - a,
¢tra(r-)7= 'lrbt(k'Ov I‘) . T10 - a,

r € region 1, (8.7.7a)
r € region 0. (8.7.7b)
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Figure 8.7.3 The two-interface problem.

Consequently, with the canonical problems defined for the one-interface prob-
lem, the solution for the many-interface problems is easily derived as shown
in the following. i

§88.7.2 Many-Interface Problem

Consider the two-interface problem shown in Figure 8.7.3; the two sur-
faces S; and S, may not be concentric. So, it is necessary to express the T
matrices of the two interfaces in different coordinate systems. This is easily
achieved via the translation formulas described in the previous section.

Consequently, in region 0, the field is

do(r) = Rewp *(ko, 1) - a0 + P *(ko, 11) - bo; (8.7.8)
in region 1, the field is .
¢1(r) = Rep'(ky,r1) - a1 + P (k1,12) - by; (8.7.9)
and in region 2, the field is
$2(x) = Reyp'(k, r2) - 22, (8.7.10)

where r; is in the coordinates for the first interface S;, and ry is in the
coordinates for the second interface S;.1* Hence, the scattered fields, which
are the second terms in (8) and (9), are expressed in the coordinates of
the surfaces that cause the scattering. The transmitted field in (10) is also
expressed in the coordinates of the surface that causes the transmission.

13 The coordinates for a surface S should be chosen so that the inscribed and exscribed
spheres shown in Figure 8.3.1 are not too far from the surface S in order to avoid
ill-conditioned T matrices.
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By requiring the outgoing wave in region 0 to be a consequence of the
reflection of the incident wave plus the transmission of the outgoing wave ip
region 1, we have

by = Ry, ‘ao‘l-Tlo'Blz‘bl- (8.7.11)
In the above, the translation formula [see (8.6.3)]
¢t(k1,r2) by = ¢t(klyr1) ',_312 - by (8.7.12)

is used to translate the outgoing wave in the r, coordinates to the r; coordi-
nates. The incoming wave in region 1, Rev*(ki,r;) - a5, is a consequence of
the transmission of the incoming wave in region 0 plus the reflection of the
outgoing wave in region 1. Therefore,

a = TQ] - ag + ﬁlo . 312 . bl' (8713)

By the same token, we express

Rep(ky,r1) - a; = Repi(ky,12) - By - a1 (8.7.14)
so that (9) becomes
¢1(I‘) = %61,[)‘(]01,1‘2) . 521 ~ap + ’(,[)t(kl, 1'2) . bl. (8715)
Then,
by =Ry - By - a1, (8.7.16)

where R, is the reflection matrix for waves incident from region 1 onto the
interface between regions 1 and 2.

From (11), (13), and (16), it follows that

a; = @1— '_Tm * Ag, (8-7~17)
b1 = R12 . ﬁZl . Ml_ . TOl - ag, (8718)

and .
bo = [Ro1 + T1o - Byy - Ruz - By - My - Toy] - @9, (8.7.19)

yvhere M- = [I-Ry By Riz- By - Similarly, we deduce that the field
in region 2 is the transmission of the field in region 1, and hence,

a; =Tz B a1 =Ty By Mi_ Tq - ag. (8.7.20)

With these amplitude coefficients known, the field everywhere is found.

Note that from (19), a generalized reflection matrix can be defined for
region O such that

Ror =Rg + Tuo- 312 Ry 321 “M,_ - Ty (8.7.21)
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Figure 8.7.4 A multilayered scatterer.

If an inner region is now added to region 2, we need only modify Ry, to Ri2
in the above. Consequently, a recursive relation for a many-interface problem
as shown in Figure 8.7.4 is expressible as

Riie1 = R+ Tirni Bigrase Rivrire Biraier Misr - Tigats (8.7.22)

where

My, = [T ~Ris1i Birrivr Rivriez Bi+2,i+1] ) (8.7.23)

and ﬁi,i+ , for the innermost region is zero. Moreover, if the field in region i

is written as
qSi(r) = §Re‘¢'(ki, I'i) -a; + ’d)t(ki, ri+l) . bia (8724)

then a; could be found recursively as (Exercise 8.31)
A1 = Miyi-  Tiar - Bigri- & (8.7.25)

with ag known. Furthermore, b; is related to a; as

b; =Ri;in 'Bi+1.i - a,. (8.7.26)

In this manner, the field everywhere inside the scatterer can be calculated.
Note that the translation matrix B is not necessary if the surfaces are near
concentric. However, they are necessary in the example shown in Figure 8.7.3,
where it is not possible to expand the T matrices for the two surfaces in one
coordinate system. If all the surfaces are concentric circles or spheres, then
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Figure 8.7.5 A multilayered scatterer for the inside-out problem.

the results here reduce to those of Chapter 3. Therefore, we can consider
these results a generalization of those in Chapter 3.

On the other hand, if we have an inside-out problem as shown in Figure
8.7.5, the recursive relation for the reflection matrix is

R_i+l,i = ﬁi+1,i + Ti,i+1 ‘Bi—l,i . E.i-—l ':Bi,i—l 'Mi,+ 'Ti+1,i7 (8'7-27)

where

_ _ . — -1
Mi,+ = [I - R ﬁi,i+1 ‘R :Bi,i+1] » (8.7.28)

with ﬁ,-ﬂ,,- for the outermost region being zero. Moreover, if the field in
region i is expressed as in (24), then,

bi = My - Tip1i - Bijar - bin (8.7.29)

allowing all b;’s to be found with by known. In addition, the a;’s are related
to the b;’s via

a; = ﬁi,i—l 'Ei,i+1 - b (8'7'30)

In this manher, all the fields in every region can be found. Note that the M
matrices defined above account for multiple reflections in the layered medium
(see Exercise 8.31).

Hence, if a source is embedded in one of the layers, the combination of
solutions from Figure 8.7.4 and Figure 8.7.5 can be used to calculate the
field everywhere. Also, the above algorithm can be easily adapted to vector
electromagnetic fields.
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Psca

Figure 8.8.1 The scattering from an inhomogeneous scatterer is solv-
able by the combination of the surface integral equation method and
the finite-element method.

§8.8 Surface Integral Equation with Finite-Element Method

The finite-element method (FEM) is versatile for highly inhomogeneous
media. Moreover, it generates a sparse matrix for a differential equation
economizing on memory requirement. But in using the FEM directly for
an infinite domain, a large number of unknowns is usually involved, hence
making the memory requirement inordinately large. Fortunately, one way to
reduce the size of the problem is to couple the FEM with the surface integral
equation method. In this manner, the FEM needs to be applied only over
a finite domain drastically reducing the required memory. Such a method
is also called the hybrid method (Silvester and Hsieh 1971; McDonald and
Wexler 1972) or the unimoment method (Mei 1974; Chang and Mei 1976;
Morgan and Mei 1979).

Consider the scattering by an inhomogeneous scatterer as shown in Figure
8.8.1. In the region exterior to S, we define a Green's function satisfying

(V2 + k) golr, ) = —6(x — ') (8.8.1)
and the radiation condition at infinity, and the field satisfying
(V% + k2) ¢o(r) = 0. (8.8.2)
But interior to S, we define a Green’s function satisfying
[V - p(x)V + K(x)]gs (x,¥') = —8(r — ) (8.83)

and the field satisfying
[V p(r)V + K ()]s (r) = 0. (8.8.4)
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Then, it is straightforward to show, as in (8.1.10) and (8.1.11), that

r € Vo, do(r) } = inc(T) —/dS’ [go(x,T') A Vo (x') — Go(x') 7'~ V' go(x, ')},

reVy, O
s

(8.8.5)
and that
:- 2 ;1): ?1(1‘) } = /dS’ ((r,x) A - Vg (r') ~ o (xR - V'gi(r,r')].
5

(8.8.6)

In the above, we have assumed that p(r) = 1 on S. In other words,
p(r) # 1 only in the scatterer depicted in Figure 8.8.1. Consequently, the.
above surface integral equations divide the problem into two problems, one
internal to S and one external to S. In theory, it could be solved as before.
But inside S, the medium is inhomogeneous and g:(r,r’) is not generally
available in closed form.

Therefore, in order to find gi(r,r’), one presumably can solve (3) with a
numerical method like the finite-element or the Galerkin’s method. But to
derive (6), g1(r,r') has to satisfy (3) only for r and r’ inside S. Hence,
Equation (3) needs to be solved only over a finite region. For instance,
it could be solved with the imposition of the natural boundary condition
- V'gi(r,r') = 0 on S as discussed in Chapter 5. In this case, we let

N
alr,r’) = Zanfn(r), r,r' € Vi, (8.8.7)

n=1

where fo(r) constitutes a basis set that can approximate gi(r,r’) fairly well.
Consequently, the matrix equation corresponding to (3) with the aforemen-
tioned natural boundary condition is (see Exercise 8.32)

zN:Lmnanzbm, m=1,...,N, (8.8.8)
where
Lonm = —(V fn(0), B(E)V Fal0)) + {fin(x), KE() fu ) (8.8.92)
is symmetric, and
b = —(fon(2), 8 — 1)) = —fm(r")- (8.8.9b)

As a note, the inner products above are defined as volume integrals in the
volume bounded by S, i.e., (f(r),g(r)) = [ dr f(r) g(r).
Vi :
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Finally, we obtain

1

a(r, ) = —fi(r) - L - £(r'), (8.8.10)

where L is a matrix with elements L,,, and f is a column vector containing
-

Now, given g;(r, ') and the natural boundary condition, #-V'g;(r, ') = 0,
it satisfies, the upper part of Equation (6) becomes

$1(r) = —£%(r) - L. / ds' £(r'y A - V' (r'). (8.8.11)
5
Note that the second term on the right-hand side of (6) vanishes by virtue of

fi- V'gi(r,r") = 0 on S. The above and (5) together constitute the integral
equations which can be solved for ¢1(r) and @ - Vs (r).

To solve (5) and (11), we expand the surface unknowns ¢:;(r) and 7 -
V¢1(I’) a,s“

M
$1(5) = ) emm(x), (8.8.122)
A Vei(r) = Y dmthm(r), (8.8.12b)

where 9, (r) constitutes a basis set that can approximate ¢;(r) and i+ V¢ (r)
on S fairly well. The above can be substituted into (11) and tested with n(r)
on S, thereby yielding

A\

M M
Z_(%(r),%(r))cm = = (a(@), £ () L7 Y i (), Y (),

(8.8.13)
where the inner product involves a surface integral over S. Furthermore, the
above could be written as

(1,[)(!‘), ¢t(r)> C=—= <’l,[)(l'), ft(r)> ) E_l ! <f(r'),1/)t(r')> ) d’ (8'8'14)

where (r), c, and d are column vectors containing ¥m(r), cm, and dm re-
spectively. Alternatively, (14) is equivalent to

Fc=-A-L " A"d=-M-d, (8.8.15)

where

F = (y(r), ¢'(r)), (8.8.16a)

14 1t is not necessary to use the same basis set, ¥m (1), to expand both surface unknowns
as we have done here.
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A= (¢(r)7ft(r))a (8816b)
M=A.T A (8.8.16c)

and F is an M x M matrix while A is an M x N matrix where M is usually
less than N.

Next, using the continuity of the potential plus the continuity of the
normal derivative of the potential, we can express

M
$o(x) = D cathm(r), (8.8.17a)
M
i Veo(r) = D dmm(r)- (8.8.17b)

Then, using the above in the lower half of Equation (5) and testing with
Pn(r) on S, we have

(Wa(r), Gine(r)) = Y (n(r), 9o(r, ), Yrm(r))

M
= @a(r), A V'go(r, ), ¥m(r))Cmy, =1, M. (8.8.18)

m=1

Note that the above is just a matrix equation of the form

$ine=8-d—N-c, (8.8.19)
where
[¢inc]n - (¢n(r)7 ¢inc(r))7 (8820&)
[Blam = (@n(x), go(r, 1), ¥m(r)), (8.8.20b)
[N, = @ale), A" V'go(x, 1), P (r"))- (8.8.20c)

Moreover, in the above, we have defined

(Wa(x), F(r, 1), ¥m(x)) = /dS/dS"(/;n(r)f(r,r’)d)m(r'). (8.8.20d)
5

5
Now, (11) and (5) have been reduced to matrix equations (15) and (19)
respectively, from which ¢ and d can be solved. Therefore, on eliminating d

between (15) and (19), we have

Bine = — [@'M_l‘F-l'N] ¢, (8.8.21)
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or

c=— [E M F+ﬁ] - Dines (8.8.22a)
1 -

d=-M'-F-c (8.8.22b)

Once ¢ and d are found, the surface unknowns can be found through (17)
and the field everywhere determined via (5) and (11). This idea is, of course,
easily extended to solving vector electromagnetic integral equations, albeit
with increased complexity. '

Notice that when g;(r, ') was solved for in (3), it was done so with the
natural boundary condition #- Vg;(r,r’) = 0. This is actually equivalent to a
source excitation problem in a cavity with impenetrable walls. Unfortunately,
this cavity has resonant frequencies that are purely real in the lossless case.
Therefore, at the resonant frequencies of the cavity formed by S, the matrix
L becomes singular. When this happens, it is quite difficult to solve for M
in (15).

When ¢ and d are found in (22), only M is required. In this case, the
singular value decomposition method may be used to find the inverse of L
(see Exercise 8.33). Moreover, the regularization method may be used to find
the inverse of T, (Exercise 8.34; also see Tikhonov 1963). Alternatively, an
impedance boundary condition for the Green’s function, instead of the natural
boundary condition, will eliminate the resonance problem (see Exercise 8.35),
because then the cavity is lossy with a complex resonant frequency.

We have illustrated how the surface-integral-equation method is used to
merge a finite-element solution with the solution in the external region. But
the surface integral equations yield matrices g and N which are dense, in
contrast to the sparse matrix L in (9) generated by the finite-element method.
Hence, this precludes the use of a sparse-matrix solver which is usually more
efficient than a dense-matrix solver. To remedy this, absorbing boundary
conditions defined in Chapter 4 may alternatively be used to merge the finite-
element solution with the exterior solution (see Exercise 8.36). This then
yields sparse matrices which can be inverted with sparse-matrix solvers.

§8.9 Volume Integral Equations

When a bounded medium is highly inhomogeneous, there are several
methods of solving for its scattering solution. One way is to approximate
the inhomogeneous medium with N scatterers and seek its scattering so-
lution via the method of Section 8.6. If the inhomogeneous body can be
approximated by a multilayered medium, the method expounded in Section
8.7 can be used. Furthermore, the hybrid method of Section 8.8 may be
used. An alternative approach is to use volume integral equations where the
unknowns in the problem are expressed in terms of volume current flowing
in the inhomogeneity. The volume current consists of conduction current
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as well as displacement current induced by the total electric field. An ip-
tegral equation can then be formulated from which the total field is solveq,
We shall first show how such an integral equation can be formulated for the
scalar wave equation and later, formulate the integral equation for the elec-
tromagnetic wave case. Historically, the volume integral equation method
has been developed as early as 1913 by Esmarch (see Born and Wolf 1980,
p. 98). This equation is also described by Richmond (19652, b), Harrington
(1968), Poggio and Miller (1973), and Strém (1975).

The volume integral equation offers an alternative physical picture of the
mechanism that gives rise to scattering. As such, it provides insight as to how
approximate scattering solutions can be obtained, as shall be illustrated in
the next section. Furthermore, it can be used to formulate inverse scattering
algorithms detailed in the next chapter.

§§8.9.1 Scalar Wave Case

We shall first derive the volume integral equation for the scalar wave case.
In this case, the pertinent scalar wave equation is

[V2 + E*(r)]e(r) = g(r), (8.9.1)

where k?(r) = w?u(r)e(r) represents an inhomogeneous medium over a finite
domain V, and k? = k = w?ue, outside V (see Figure 8.9.1). Next, we
define a Green'’s function satisfying

(V2 + kZg(r,r') = =6(r — 1'). .. (8.9.2)
Then, Equation (1) can be rewritten as
[V + Kle(x) = q(r) = [K*(r) — K)g(r). (8.9.3)

Note that the right-hand side of (3) can be considered an equivalent source.
Since the Green’s function corresponding to the differential operator on the
left-hand side of (3) is known, by the principle of linear superposition, we can
write

o(r) = - / aV'g(r, r)g(r') + / AVg(e YR — KZG(E).  (8.9.4)
Vs 1%

The first term on the right-hand side is just the field due to the source in
the absence of the inhomogeneity, and hence, is the incident field. Therefore,
Equation (4) becomes

B(r) = Gine(r) + / dV'g(r,r')[k*(r') — kZlé(x'). (8.9.5)
14

In the above equation, if the total field ¢(r'} inside the volume V is known,
then ¢(r) can be calculated everywhere. But ¢(r) is unknown at this point.
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€pr Hp

Figure 8.9.1 A current source radiating in the vicinity of a general
inhomogeneity.

To solve for ¢(r), an integral equation has to be formulated for ¢(r). To
this end, we imposed (5) for r in V. Then, ¢(r) on the left-hand side and
on the right-hand side are the same unknown defined over the same domain.
Consequently, Equation (5) becomes the desired integral equation

Bine(r) = B(r) — / V' g(r, ¥)RA() — K6(x'), TEV. (8.9.6)

v

In the above, the unknown ¢(r) is defined over a volume V, over which
the integration is performed, and hence the name, volume integral equation.
Alternatively, the above can be rewritten as

bine(r) = [T — L(r,1)]¢(x), TEV, (8.9.7)

where 7 is an identity operator while £ is the integral operator in (6). It is
also a Fredholm integral equation of the second kind because the unknown
is both inside and outside the integral operator.

§§8.9.2 The Electromagnetic Wave Case

We shall show how the corresponding integral equation can be derived
for a finite size, inhomogeneous scatterer for the electromagnetic wave case
shown in Figure 8.9.1. First, from Maxwell’s equations, it follows that the
electric field everywhere satisfies the following equation:

V x 7'V x E(r) — w?eE(r) = iwJ(r), (8.9.8)

where u and ¢ are functions of position inside the inhomogeneous region V.
Next, subtracting V x u; 'V x E(r) —~w?e, E(r) from both sides of the equation,
we have

Ux(u ™t —ug ) VX E(r)—w? (e~ ) B(r) = iwd(r)—V x p; ' VX E(r) +w’eE(r),
. (8.9.9)
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To formulate the integral equation, we need the dyadic Green’s function tq
the problem in the absence of the scatterer. The dyadic Green’s function
satisfies the equation

V x 'V x G(r,1') — w?e, G(r, 1) = p; ' T6(r — 1'). (8.9.10)

Even though g, and €, need not be constant, but when they are constant,
the solution to (10) is well known, as discussed in Chapters 1 and 7. Conse-
quently, we can rewrite Equation (9) as

V xpy 'V XE(r)—w?6E(r) = iwd (r)+w?(e—ep) E(r)—V x <% - i) VxE(r).

. (8.9.11)
Physically, the terms on the right-hand side of Equation (11) are effective
current sources. Therefore, analogous to (7.4.5a), the solution to (11) is

E(r) = iw/ dr' G(r,r') - upJ(r') + wz/ dr' G(r, 1) - (e — €5) E(r')

— 1
_/ dr' G(r,r') - V' x (; - ui) V' x E(r'). (8.9.12)
b
14

In the above, the first term is just the incident field; hence, (12) becomes

E(r) = Ep(r) + wz/ dr' G(r,1') - py(e — &) B(r')
v
el ! ! 1 1
—/ dr’' G(r,r") - V' x <— - —) V' x E(r'). (8.9.13)
J B b
The integrals in (13) are contributions to the field E from the volume
current induced in the scatterer by the total electric field E and magnetic
field H (note that V x E = iwuH). Hence, the first term is generated by
the electric polarization current or displacement current, while the second
term is generated by the magnetic polarization charges (see Exercise 8.37).
Moreover, when the scatterer is conductive such that € = ¢ + io/w, the
first integral in (13) is due to the conduction current induced by the field as
well. This is obviated by substituting the complex permittivity into (13) and
identifying a term proportional to ¢E corresponding to conduction currents.
On the other hand, if 4 = p;, Equation {13) simplifies to

E(r) = Ejn.(r) +/ dr' G(r,v') - O(r)E(r"), (8.9.14)
where O(r') = w?(pe — myep) = k*(x') — k.

In Equations (13) and (14), the field E;,. is usually known since we know
the source J. But the total field E(r) is unknown, and it is in the integral as

§8.9 VOLUME INTEGRAL EQUATIONS 483

well. Therefore, analogous to (6), (14) is a volume integral equation, which
can be written as

E(r) = E;..(r) — L(z,r') - E(r'), revV, rev, (8.9.15)
where £ is a linear integral operator in (13) or (14). Alternatively, we can
write (15) as

Eine(r) = [I - L(r,r)]-E(r'), r'eV, reV, (8.9.16)

where 7 is an identity operator. Since T —Z is a linear operator, we can apply
Galerkin’s method, or the method of moments to solve (16), as discussed in
Chapter 5. Once E(r) is known inside V, E can be found everywhere via
Equations (13) or (14). Equation (16) is a Fredholm integral equation of the
second kind because the unknown is both inside and outside the integral.
Equation (14) can also be written in operator form as shown in Subsection
9.3.3 of Chapter 9.

The above derivation is easily generalized to the case where the dyadic
Green’s function is for layered media discussed in Chapter 7. In this case,
the background medium need not be homogeneous.

' §§8.9.3 Matrix Representation of the Integral Equation

Given the integral equation in (14), it can be converted into a matrix
equation quite easily using the method discussed in Chapter 5, i.e., by pro-
jecting the integral operator onto a space spanned by E,(r), where E,(r) =0
for r ¢ V. To this end, we let

E(r) =) aE.(r), re€V, (8.9.17)

in (14). Then,

> 6aEn(r) = Eine(r) + Y _as / dr' G(r,r') - O(r)E, (r"). (8.9.18)
n n v

The above integral operator acting on E,(r) is not a symmetric operator.
Nevertheless, it can by symmetrized by multiplying (18) by O(r) (see Exercise
8.38). In this manner, (18) becomes

> an0(r)Eqy(r) = O(r)Eine(r)
+Ya,0(r) / dr' G(r,r') - O(')E,(r').  (8.9.19)
" v
Consequently, after dot-multiplying the above by E,,(r) and integrating as

in Galerkin’s method, we have
> an(Em, O(r)En) = (Em, O(r)Ei)

+ Zan <Em,0(r)/dr’ G(r,1r')- O(r’)En(r')> . (8.9.20)
m 4 -
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Now, Equation (20) is a matrix equation of the form

Z Mynan = by + Z Nin@n, (8921)

or . o
(M—-Nj)-a=b, (8.9.21a)

where
an - <Em; O(I‘)En), (8922&)
Npn = <Em,0(l‘)/dr' E(I‘,r') -0(1")En(l")> , (8.9.22b)
: 14

bm = <Ema O(I)Einc)- (8922(})

Moreover, with a finite basis set, we can always invert (21a) to find the
unknown a, the column vector that contains the unknowns a,’s.

Because of the singularity of the dyadic Green’s function G(r, '), (22b) is
not well defined (see Chapter 7). This can be remedied, however, by writing
the integral as

N = / dr O(r)Enm(r) - (1+ V;) - / dr'g(r, ) OW)EL(r).  (8.9.23)

Furthermore, using integration by parts on the term that contains VV, we
have (see Exercise 8.38)

N /drO /dr g(r,r")O(x")E,(r")
“w /drV [O(r)Ep(r)] /drg r,r)V' - [O(r)E,{r)]. (8.9.24)

This is done to circumvent having to integrate the singularity of the dyadic
Green’s function. Note further that in (21a), M and N matrices are sym-
metrical. A real-symmetric matrix readily lends itself to being solved by the
conjugate gradient method.

Equation (19) is also solvable by testing it with other weighting functions.
A popular testing function is the Dirac delta function, as in the method of
point matching. In this case, the double integrals in (24) reduce to single
integrals, and the effort to compute the matrix element in the matrix equation
is greatly reduced.

§8.10 Approximate Solutions of the Scattering Problem

The solution of the volume integral equation usually has to be solved
for numerically. This is, in general, computationally intensive because in
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finding the matrix element N,,, in the previous section, we may have to per-
form a double integration. For many problems, however, especially when
the scattering from the inhomogeneity is weak, it suffices to derive approx-
imate solutions to the scattering problem. Therefore, we shall discuss two
approximate solutions, the Born epprozimation (Born and Wolf 1980, p.
453), which works better at low frequencies, and the Rytov approxzimation
(Tatarski 1961), which works better at higher frequencies. Moreover, both
approximations are weak scatterer approximations.

§§8.10.1 Born Approximation

In the cases when k2 — k? is small, or where the contrast of the scatterer
is weak so that the second term on the right of Equation (8.9.14) is small
compared to the first term, we can a.pproxlmate

E(r) = Eine(r). (8.10.1)

Then, the total field in Equation (8.9.14) can be approximately calculated as

E(r) = Ejpe(r) + / dr’ G(r,r') - O(r)Ep(r). (8.10.2)

\4

The above is known as the first-order Born approximation. It is also the first-
order approximation in the Neumann series expansion of integral equation in
(8.9.14), or the Taylor series approximation of E(r) using (k* —kf) as a small
parameter (see Exercise 8.39; also see Chapter'9, Subsection 9.3.3).

Since the Born approximation is good orﬂy when the second term is much
smaller than the first term in (2), we can establish the regime of validity of the
Born approximation.® First, notice that for the homogeneous background
case,

G(r,1r') = <T+ %) g(r,r'). (8.10.3)

If the size of the scatterer is of the order L, and k,L < 1, then by dimensional
analysis (see Exercise 8.40),

g(r,r’) ~ I VV ~ 7R (8.10.4)
Then,
G ! 1 ! ! 8.10.5
(r1r)N +k2L2 L) ( Y- a‘)
O(r) = (k2 —_ kb) ~ kbAe,, (8105b)

15 The regime of validity of the Born approximation has also been discussed by Keller
(1969).
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(where Ae, = ¢/e;, — 1) and
/ dr’ ~ L*. (8.10.5¢)

Therefore, one sees that the second term in (2) is of the order of
[(ksL)? + 1] A€, Eine. (8.10.6)

But since kL < 1, in order for the scattered field to be much smaller than
the incident field, the constraint is

Ae < 1, (8.10.7)

in the long wavelength limit.
On the other hand, in the short wavelength limit, the controlling factor

for the magnitude of V'V is not the size of the object, but the field variation
inside the object, which is controlled by the wavelength of the field. Then,

VV ~ k2. (8.10.8)

Furthermore, the phase of the wave as it propagates inside the object becomes
important. For example, if E;,. ~ e T then the total field inside a tenuous
inhomogeneity consists of a linear superposition of plane waves of the type
E ~ e*T (which is motivated by WKB type approximation; see Chapter 2)
when k — 00.1¢ Therefore, we can write

E ~ eikb-r i(k—ks)-r
~ Emce ik—kp)r (8109)

and hence, E =~ E;,. only if (k— k)L <« 1. Consequently, at high frequencies,
the Born approximation is valid only if

ko LAe, < 1, kL — oo. (8.10.10)
Note further that the above is a much more stringent restriction than (7)

(also see Exercise 8.41).

In some applications where there is no charge accumulation (for exam-
ple, a TM wave impinging on a cylinder), the VV term can be neglected.
Then, the problem reduces to a scalar one, and the constraint on the Born
approximation from (4) to (6) becomes (Exercise 8.42)

K2L*Ae, < 1. (8.10.11)

Moreover, in the long wavelength limit, k,L <« 1, and this constraint could
be met even when Ae, > 1. Hence, in this case and the scalar wave case,

16 Strictly speaking, it should be E ~ eifkdz', but this distinction is not important for this
order-of-magnitude argument.
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the Born approximation becomes exceedingly good at low frequencies. But
at high frequencies, constraint (10) holds true also for scalar waves, since
polarization-charge effect is unimportant at high frequencies. Finally, it is
important to note that the above constraints are for a three-dimensional
space. In a one- or two- dlmensmnal space, they have to be rederived (Exercise
8.42).

The Born approximation is a single-scattering approximation. Moreover,
note that in Equation (2), the incident wave enters the scatterer with no dis-
tortion, induces the polarization current proportional to (k? — k?)E;., and
causes a re-radiation or scattering. Since the incident field is unaffected while
it gives rise to a scattered field, the Born approximation violates energy con-
servation. However, because of the symmetry of the dyadic Green'’s function,
reciprocity is still preserved under the Born approximation.

When a conductive inhomogeneity is in an insulating background, k¥%(r) ~
iwpo(r) when w — 0 and kf = w?ue, when w — 0. Then, from (3)
G(r,r') ~ —5 w — 0. (8.10.12)
However,
O(r) ~w, w— 0. (8.10.13)
Therefore, the scattered field term in (2) is proportional to 1/w when w — 0.
This low-frequency divergence implies that the Born approximation is exceed-
ingly bad at low frequencies when a conductive inhomogeneity is embedded in
an insulating background. This happens because when we approximate the
induced conduction current (eddy current) in the conductive inhomogeneity
by
J = 0E ~ oE;,, (8.10.14)

in the Born approximation, the induced eddy current is terminated abruptly
at the insulator/conductor interface. We can see this from the continuity
equation, where the charge ¢ = V - J/iw implying that these charges at
the interface diverge as 1/w when w — 0, giving rise to this low-frequency
divergence if V -J # 0. But note that this problem does not arise if both the
background and the scatterer are conductive.

§§8.10.2 Rytov Approximation
We have seen in various instances (e.g., Section 2.8, Chapter 2) that
the polarization-charge effect is unimportant at high frequencies when the
wavelength is much smaller than the size of the inhomogeneity. If this is
actually the case, the study of the vector electromagnetic wave equation may
be reduced to the study of the scalar wave equation. Therefore, the pertinent
equation is then
[V2 + k2(r)]¢(r) = 0. (8.10.15) -

To derive the Rytov approximation, we first let
P(r) = ¥, (8.10.16)
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Then,
Vé(r) =i¢( Vi (r), (8.10.17a)
V- V(r) = {iV*%(r) - [V(r)]*}4(r) (8.10.17b)
Using the above in bquatlon (15), we have
iVAP(r) - (V§)? + k¥ (r) = 0. (8.10.18)

At this point, Equation (18) is still exact but nonlinear. However, we can
solve (18) perturbatively by letting :

Y(r) ~ Yo(r) + 91 (r). (8.10.19)
Here, 1o(r) is assumed to satisfy the equation
iV2Po(r) — (V)2 + ki (r) = 0, (8.10.20)

L.e., it is the solution in some background medium with wave number k.
After substituting (19) into (18), consequently, we have

iV2h1(r) — 2(Veho) - (Vi) — (V91)? + O(x) = 0, (8.10.21)

where O(r) = k? — k2. At this point, the above equation is nonlinear, but it
could be simplified by using the identity that

VE(doth1) = 11 V20 + 2(Veo) - (V1) + ¢oV4P1, (8.10.22)
where ¢g = eV, Since V2¢y = —kf¢ and Vo = i(Vikg) ¢o, we have
VHbotn) = —kZbrdo + 2ido(Vedo) - (Vb)) + doV2eh,. (8.10.23)
Then, on multiplying (21) by ido and using (23), we obtain
V(gow1) + kidowhs = —ido(Vh1)? + idoO(r). (8.10.24)

Equation (24) is still exact at this point. But if we assume that 1, is
small so that (V#;)? is even smaller, Equation (24) can be approximated as

(V2 + k) dotpy = ighpO(r). (8.10.25)

The solution to (25) is then

Pi(r) = —#@/ dr' g(r, 1) ¢o{r')O(r"). (8.10.26)

The above approximation is known as the Rytov approximation; the total
solution is

o (r) = go(r)eh . (8.10.27)
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The Rytov approximation is valid when the first term on the right of
Equation (24) is much smaller than the second term, or

(V41)® < O(x). (8.10.28)

Moreover, this approximation attempts to correct for the phase of the wave
as it propagates through the inhomogeneous media. Hence, it shares some
similarity with the WKB approximation.l”

Applying dimensional analysis, it can be shown from (26) that
¥1(r) ~ k2L2Ae,, when k,L — 0. (8.10.29)

Furthermore, assuming that V ~ 1/L when k,L — 0, then the use of (29)
into (28) yields the condition that

(kL) Ae, < 1, (8.10.30)

which is the same as (11). Again, this is dependent on dimensions.

On the other hand, when the f_requency tends to infinity, the field inside
the inhomogeneity is of the form €. Then,

P(r) ~ et ~ gikoreilk=ke)m g ot (r) (8.10.31)
Therefore, ¢(r) ~ (k — k) - r, and
Pi(r) ~ kyLAe,, kL — co. (8.10.32)

Moreover, assuming that V ~ 1/L when k,L — 00,18 the use of (32) into (28)
yields the constraint
: Ae, < 1, (8.10.33)

which is more relaxed than (10).

In the Rytov approximation, the correction ;(r) occurs as a phase term.
But the magnitude of the correction to ¢0(r)‘is always unity even when 1, (r)
is bad. Hence, the approximation breaks down more gracefully compared
to the Born approximation. Furthermore, the form given by (27) or (31) is
more suitable for the field inside the inhomogeneity. Outside the scatterer,
the constraint is again given by (10) for high frequencies (Exercise 8.43).

Note that the Born approximation for the scalar wave equation is of the
form

- / dr’ g(r,"YO(r") ¢4(r'), (8.10.34)

17 The regime of validity of the Rytov approximation has also been discussed by Fried
(1967), Brown (1967), Keller (1969), and Crane {1976).

18 Unlike (8), V ~ 1/L instead of &y here because ¥ operates on 11, which is the phase
variation.
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where ¢;(r) is the scattered field and ¢o(r) is the incident field. But whey
11(r) is very small, we can rewrite (27) as

é(r) = do(r) + 131 (r) do(r). (8.10.35)

Therefore, ¢1(r) ~ ih1(r) go(r) if ¥1(r) is very small. Then, on multiplying
Equation (26) by i¢o(r), we recover Equation (34). Hence, the Born and
Rytov approximations reduce to the same approximation when the scattered
field is very weak.

Both the Born and the Rytov approximations assume that the scattered
field is linearly proportional to the inhomogeneity O(r). As such, this lin-
earized approximation makes them particularly suitable for solving the in-
verse problems when the scatterers are weak scatterers.

Exercises for Chapter 8

8.1 (a) Find another solution of (8.1.3) in V; that also satisfies the radiation
condition at infinity.

(b) Show that the integral over S;.¢ in (8.1.6) vanishes by virtue of the
radiation condition. In other words, if the sources that generate the
field are finite in extent, all fields will look like outgoing plane waves
when r — oo.

8.2 (a) Derive Equation (8.1.11) in the manner of Equation (8‘-.1.10). Does
g2(r —1') in (8.1.11) need to satisfy the radiation condition?

(b) Show that (8.1.11) can be simplified by imposing either a homoge-
neous Dirichlet or Neumann boundary condition for go(r,r’) on S. In
this case, explain why go(r,r') is only defined in V;, and the lower
part of (8.1.11) does not hold anymore.

8.3 (a) For an unbounded homogeneous-medium dyadic Green’s function,

show that V x G(r,r') = V x Xg(r,r') = ~V' x Ig(r,r'). Hence,

show that
[V x _G—(r,r')]t =—(V'x T)tg(r,r’) = V' xIg(r,r') = V' x G(r',1).

(b) Derive Equation (8.1.27) in a manner similar to deriving (8.1.26).

(c) Show that Gy(r,r') need not satisfy the radiation condition in this
case. .

(d) Show that G(r,r’) in (8.1.28) need not be the homogeneous-medium
Green'’s function.

8.4 (a) Derive the identity in Equation (8.1.37).

(b) Derive Equation (8.1.41) and hence, the integral equations in
(8.1.42a) and (8.1.42b). -
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8.5 Show that the 2 components of the electromagnetic field, after Fourier
transforming according to (8.1.43) to (8.1.45), satisfy (8.1.46).

8.6 Derive Equations (8.1.53) and (8.1.54). Show that Gi(p, p') and G2(p,
p') need not be of the form given by (8.1.51). What other forms can you
think of?

8.7 Derive the relations (8.1.60) and (8.1.61) and hence, (8.1.62).

8.8 Because of the singularity contained in 7 - Vg(r,r’), Equations (8.1.10)
and (8.1.11) are undefined when r € S. But using the definition of the
principal value integral as in (8.2.12), the integrals in (8.1.10) and (8.1.11)
can be defined even when r € S. Show that under such a definition,
integral equations similar to (8.1.12a) and (8.1.12b) are

Bie(s) = 36306) + £ 4B an(r, ) V() — 1) V(5,1
’ res,

0= 56a(0) - f 45" [@a(r,T)V'a(c) - dale')V'au(e, ),
d res.

8.9 In (8.2.1), show that £y; and Ly are symmetric operators while £,
and L, are skew-symmetric operators. Hence, show that their matrix
representations by Galerkin’s method yield symmetric or skew-symmetric
matrices. '

8.10 (a) Show that Equation (8.2.14) is always uniquely defined, i.e., it is
not discontinuous across the surface S.

(b) Derive Equation (8.2.19) similar to the procedure given in (8.2.9) to
(8.2.12).

8.11 (a) Show that for the boundary-element method, the tangential mag-
netic field on the n-th triangular pat)ch can be expanded as

3 3
hi n
i x Hy = Z[hilnNiln + hionNign) = Z[Nilm Nizn) [ h;n}

i=1 =1
o =t
= Nin hin =N, by,
i=1
where —, o .
Nn = [Nlny N2n7 Nan] ) hytl = [hfna h;m hgn ’
and

Nin = [Nitn, Nizn), by, = [Bitn, haza].
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(b)

()

()

N1 and Ny, are as defined in (8.2.23) for the n-th patch. Hence,
h,, is a column vector of length 6.

If a surface S is approximated by a union of N triangular patches,
show that the tangential component of the magnetic field can be
expanded as

N
AxH=Y N, h,=N'-h,

where N* = [Nlt,m ,—l\T,t\,], and ht = [hf, -+ ,h%]. Hence, his a

column vector of length 6N.

The elements of h consist of the normal components of the edge cur-
rents at the nodes of the union of triangular patches that approxi-
mates S. Since the normal components are continuous from one edge
to another, many of the unknowns in h are redundant. Hence, the
actual number of unknowns needed to approximate 7 x H is less than
6N. Convince yourself that the actual number of unknowns is 2M
where M is the total number of edges on S and that 2M < 6N.

Given that 7 is a column vector of length 2M containing the funda-
mental unknowns, show that a mapping matrix can be constructed
such that

h=M". 1,

where M is a 6N x 2M matrix. Hence, show that
=t 7t

AxH=N  -M 1.
Given an integral operator [dS' G(r,r')-#x H(r'), r € S, show that
s
its matrix representation using Galerkin’s method is given by
v <N, / 45/ T(r,r) -Nt> M
S

where the inner product is a surface integral on S. What is the
dimension of this matrix representation of the integral operator?

8.12 Give an example of g, in (8.2.27) which is not of a diagonal form, but
yet forms a complete set.

8.13 The scattering of a plane wave by a metallic circular cylinder can be
solved in closed form:

(a)

Using the integral representation of Bessel functions in Chapter 2,
Equation (2.2.17), show that a plane wave can be expanded as

0o
e—ikx — e—ikpcos¢ — z Jn(kp)einqb—in-rr/zl

N=—00
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(b) In two dimensions, the Green'’s function is [see Equation (3.3.2)]

i = (64
9lp = p) = 7H (Ko~ p) = 1 37 Julko) HO (ko).

n=—oo

Assuming ¢inc(r) is a plane wave as given above, show that (8.2.31)

simplifies to
00
Z Jn(kp)eimﬁ—in%
n=—00
i 0 . 2 »
=5 3 hEReED (o [ 4 R Ta(), p<a
n=—00

0

for a plane wave incident on a circular metallic cylinder of radius a.

(c¢) Find the matrix representation of the integral operator above by ex-
M
panding A - V'¢1(r') = 5 ane™? and testing with e~ at p = a.

m=—

Show that the simplified version of (8.2.31) in the above reduces to
Jp(ka)e™ 7% = %J,,(/ca)Hy)(ka)Qm,,.

Hence, the matrix representation of the integral operator in (8.2.31)
is diagonal in this case.

(d) Show that at the internal resonance of the circular cylinder, both the
left-hand side and the right-hand side of the above is zero, rendering
ap undefined.

(e) Show that the resonant sources of (8.2.32) generate no field outside
the scatterer. Hence, prove Equation (8.2.33) from the reciprocity
theorem (see Chapter 1, Exercise 1.13) for the scalar wave equation.
The left-hand side of the equation in (c¢) vanishes at the internal
resonance of the cylinder. Show that (8.2.33) is automatically satisfied
for this case.

8.14 A consequence of (8.2.31), by operating on it with 7 - V, is that
- Vuels) = [ 45" Varle, )7 Vi), res
s -
A combined field integral equation is defined as

Gine(T) + AR - Vyne =/dS’ gi(r,t) A - V' (1)
5

+/\/dS'ﬁ-Vgl(r,r')ﬁ’-V'qbl(r’), res.
S
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Going through the special case as illustrated in Exercise 8.13, show that
the indeterminacy in Exercise 8.13(d) due to internal resonances does not
exist for this integral equation if A is complex.

8.15 For the integral equation in Exercise 8.13(b), we expand

M
2 V(') = Y ame™,
m=-M
and test it with §(p—a)e™? and 6(p—a+A)e ¢ wherep = —M, - | M
and A < a. In other words, the integral equation is tested with points

on S as well as on points slightly interior to S. Show that the integral
equation now reduces to

Jy(ka)e™®% = éJp(ka)Hél)(ka)2wap,
p=-M, - M,
Jplk(a — A)je™% = é blk(a — A)HD (ka)2ra,,
p=—-M, - M

The above is a set of overdetermined equations with 4M equations but
only 2M unknowns. Show that the least-square solution of these overde-
termined equations eliminates the internal resonance problem encoun-
tered in Exercise 8.13, except at the resonance of the annular region
bounded by a and a — A, which has very high resonant frequencies.

8.16 By using the addition theorem [see Chapter 3, Equation (3.3.2) and
Equation (3.7.4)], show that the scalar Green’s function for a homoge-
neous medium can be expanded as in (8.3.3) for both two and three
dimensions. What is 4, (k,r) for each of these cases?

Hint: It is sometimes more expedient to use cosm¢ and sinm¢ rather
than €™ dependence so that in the lossless case, “regular part of” is the
same as “real part of.”

8.17 (a) Show that a closed cavity with the boundary condition ¢;(r') = 0
on S and filled with a material with wavenumber k; has a field that
satisfies the integral equation

0= /dS”gz(r —)A  Vi(r), reW,
s

where S and V] are the same as that in Figure 8.3.1. Now, using
(8.3.3) in the above, show that

0= /dS’ Repn(ka, v') A - Vo (r'), for all n.
5
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The above integral equation has only a trivial solution for 7' V’¢(r’)
except at the resonant frequencies of the cavity. This implies that at
the nonresonant frequencies of the cavity, the only function that is
orthogonal to Repy, (ks, ') for all n is zero. Consequently, Ret, ke, ')
is complete on S, except at the resonant frequencies of the cavity.

(b) Similarly, prove that 7 - V'Ret, (kz, r') is complete on S except at the
resonant frequencies of the cavity formed by § filled with a material
with wavenumber k;. What is the boundary condition on the wall of
this cavity? Could any of the resonant frequencies in case (a) coincide
with the resonant frequencies in this case?

8.18 Derive Equation (8.3.13) from (8.3.12).

8.19 (a) Derive the equivalence of (8.3.15) for an impenetrable scatterer with
a homogeneous Dirichlet boundary condition on S. Give the definition
for Q.m in this case.

(b) Show that at the internal resonances of the cavity formed by S filled
with a material with wavenumber k,, the matrix Q.. is ill-condi-
tioned. :

(c) Show that this problem can be remedied by using a linearly indepen-
dent set to expand the surface field rather than those suggested by
(8.3.9) and (8.3.10).

(d) Explain why the internal resonances do pose a problem for the Q
matrix of a penetrable scatterer given by (8.3.16).

8.20 Derive the equivalence of (8.3.7) for a circular metallic cylinder. Show
that the internal resonance problem encountered in Exercise 8.13 does
not exist here.

8.21 Show that in spherical coordinates, the dyadic Green’s function can be
expressed as (8.3.19). Identify the vector wave functions (see Chapter 7).

8.22 Derive Equations (8.3.21) and (8.3.22) from Equations (8.3.17) and
(8.3.18).

8.23 Show that the set % X Rewpy, (ka, ') or 2 X V' x Rep,, (ko, r') is complete
on the surface S except at the internal resonance of the cavity formed by
S and filled with a material with wavenumber k.

8.24 Prove the identity (8.3.27).

8.25 From the reciprocity theorem for the scalar wave equation, prove that
T, and hence S, are symmetric matrices. >

8.26 (a) From the scalar wave equation (V2 + k%) ¢ = 0, derive the energy
conservation theorem that [ dS7i-(¢Ve* — ¢*V@) = 0 when k is real.

s
Hence, F = ¢V¢* — $*V¢ is an energy flux.
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(b) Show that for a lossless medium,
wn(_klv r) = 1/),:(]91, l'),

where ¥, (k1,r) is derived in Exercise 8.16.
(c) Show that [dS#-[1hpVap! — (V)] = 0 when S is a closed surface,
s
and ¥ is as defined for (8.4.8).

Hint: Derive it first for when S is a circle or a sphere, and deform
it to an arbitrary S later. The deformation is allowed because V -
[WVy't — (V)] = 0 in a region excluding the origin.

(d) Using (8.4.12), (b), and (c), show that

/ dS#- (§4: — 'V4) = 1a*. / dSs [ V¢ — (V)"
S S

+8° (yVy! - (V9! -] -a"

{(e) Show that
/ dS [ Vept — (V)] = icl,

s

where c¢ is a real constant. .
Hint: The Wronskian of Bessel functions may be useful here.

(f) Therefore, show that in order for the integral in (d) to vanish to
conserve energy, 5-§' =5.5 =1.

8.27 (a) Using Rayleigh’s hypothesis method, derive the T matrix for an

impenetrable scatterer with a homogeneous Dirichlet boundary con-

dition. Show that this is the transpose of the T matrix derived by
the extended-boundary-condition method.

(b) Explain why the error in Rayleigh’s hypothesis method and the EBC
method should be of the same order if the same number of terms are
used in both methods.

8.28 (a) Derive the &;; and Eﬁ matrices in cylindrical coordinates. Show
that B;; = Rea;;, where “Re” stands for “the regular part of.”

(b) Perive the @;; and Eji matrices in spherical coordinates. Show that
B;; = Rea;; (also see Appendix D). ,
8.29 Count the number of matrix multiplications required in (8.6.17) and

(8.6.18) at each iteration, and that required after N iterations for N

scatterers. Show that the number of matrix multiplication is proportional
to N? when N — oo.
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8.30 Using the EBC method, derive the R;, and Ty matrices defined in
Equations (8.7.7a) and (8.7.7b) for the geometry shown in Figure 8.7.2.

8.31 (a) By expanding (8.7.23) and (8.7.28) into a geometric series, give a
physical explanation for each term of the series.

(b) Derive the relationships (8.7.25) and (8.7.26).

8.32 Derive the matrix representation of Equation (8.8.3); hence, derive
(8.8.8) and (8.8.9).

8.33 (a) Explain why L, and hence M ' in (8.8.15), are singular at the
resonant frequencies of the cavity formed by S. Show that for a time
harmonic solution, this poses a problem only for a lossless medium
filling the cavity.

(b) Show that for a finite vector d, ¢ is infinite at the resonant frequencies
in (8.8.15). At the resonant frequencies of the cavity, however, 7 -
Véi(r) = 0, and hence, d = 0 from (8.8.12b). Therefore, ¢ must be
finite while d = 0 at resonances.

(c) At the resonances of the cavity, L, which is symmetric, has zero eigen-
values. Using the singular value decomposition method, show that
L =5’ XS where X is a diagonal matrix containing the eigenvalues
of L. Some of these eigenvalues are zero at the resonances of the
cavity.

(d) Because of the zero eigenvalues of L, its inverse T has infinite eigen-

values. Show that M [ also has infinite eigenvalues at the resonances
of the cavity. Hence, M is not computable when L is singular.

(e) Show that by setting the zero eigenvalues of L to a small, nonzero
number, M is computable. Instead of having infinite eigenvalues, M
has large eigenvalues. In this manner, M ~'in (8.8.22) can be found

to a degree of accuracy permitted by machine precision.

8.34 A less computationally intensive method of ﬁnding T~ to within ma-
chine precision is to use the regularization method.

(a) Explain why the internal resonance poses a problem only for lossless
media in S. Show that the eigenvalues of L are always real in this
case.

(b) If a new L is defined such that L = L + i6I, where i6 is a pure
imaginary number, show that L’s eigenvalues will never be zero. 4§

~-1 X
can be chosen just large enough so that L  can be found without
overflowing the computer floating-point capability. In this manner,
M can be computed, as can M. :

Alternatively, the resonance problem can be alleviated by assuming
a small loss in V;.
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8.35 (a) Assuming that an impedance boundary condition such that #
Vg1 = Zg, on § is imposed, formulate the scattering problem by an
inhomogeneous body using the finite-element method together with
this impedance boundary condition.

(b) Explain why the internal resonance problem would not exist in this
case.

8.36 The field in V} in Equation (8.8.6) can be decomposed as 1= dine +
Gsca, Where ¢, is the scattered field due to the inhomogeneity.

(a) Show that if g, (r,r’) in (8.8.6) satisfies (8.8.3) plus the radiation con-
dition at infinity, then

/ dS' (i (r, X)W V'oea () — Goca(¥) 7 - Vgy (r,7')] =0, re W,
S .

in Figure 8.8.1. Hence, Equation (8.8.6) can be written as

¢1(r) = /dS" [91(r, 2) A V' Pine (1) — ie (1) -V (r,r)], reW.
3

(b) The above shows that ¢;(r) inside V; is known once the requisite
91(r,r") satisfying the radiation condition is known. Moreover, once
$1(r) is known, then ¢, is known inside V; and on S since gbl(r)
Pine(T) + Psea(r). But in (8.8.5), do = dinc + M5 in Vy. Hence, show
that if the homogeneous-medium Green’s function go(r, r') satisfies
the radiation condition at infinity, then

/dS’ (90(r, ¥) A+ V' Pine(r') — Pinc(x) 7/ - V'g(r,r')] =0, reV,
5

Hence, from (8.8.5), deduce that

bsca = — / as’ [gO(r’rl) ﬁl'vl¢sca(r’)_¢sw(r’)‘fll'v,go(l‘, I")], r € W.
S

In conclusion, if g;(r,r’) is known inside V; and on S, then the
field everywhere could be found. But the requisite g, (r, r') satisfying
the radiation condition can be found approximately using an absorb-
ing boundary condition on S. An absorbing boundary condition may
be of the form # - Vg; = Zg; on S, so that all outgoing waves are
absorbed on S emulating the radiation condition. Such a manner
of formulating an FEM problem with this boundary condition is de-
scribed in Exercise 8.35. Moreover, absorbing boundary conditions
are described in Chapter 4.
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8.37 Explain why the second term in (8.9.13) is related to magnetic polar-
ization charges.

8.38 Derive Equation (8.9.24) from Equation (8.9.23) and show that Ny, isa
symmetric matrix. Explain why the matrix representation of the integral
equation is symmetrized by a multiplication by O(r) as in (8.9.19).

8.39 The Neumann series expansion of an integral equation is the higher-
dimensional analogue of the Taylor’s series expansion of a scalar function.
By using the k% — k? as a small parameter, show that the error in (8.10.2)
is of higher order.

8.40 (a) Assume an integral of the form

~ [ @ gt ¥)aw),

where g(r,r') = z'v’°"|"_"'|/47r|r —r'|. By letting n = r/L and ' =
r'/L, where L is the typical size of the volume V (i.e., V =~ L?), show

that
I L2/dlezkbLIn | (D).
= N 9"
Vs drin — 'l

The integral now is mainly dimensionless except for the dimension of
q. If kL <« 1 or L < M, then show that

IL) -
I~1I? / anf 2D o4,
T T — ] (L*4(n'L)
v/L?
When should § be of the same order as q? If so, then I is O(L?q).
(b) Show that the above can be obtained more quickly by dimensional
analysis, i.e., by assuming that g(r,r') ~ 1/L, [dr’ ~ L3.
8.41 (a) For a plane wave at normal incidence on a dielectric slab of thickness
L, find the exact solution of the reflected wave.

(b) Derive the approximation of the reflected wave when £—1 — 0, where
€ is the permittivity of the dielectric slab and ¢, is the permittivity of
the background.

(¢) Derive the reflected wave using the Born approximation, and show
that this result reduces to that in (b) only if (8.10.10) is satisfied.

8.42 (a) For a scalar wave equation, show that (8.10.11) is the constraint
for the validity of the Born approximation at low frequencies.

(b} Show that the corresponding constraint for two dimensions is

kKZL*In(kL)Ae, <1,
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and that for one dimension is ks LAe, < 1.

8.43 (a) For a homogeneous dielectric slab of thickness L with a wave nor-
mally incident on it, derive the exact solution for the reflected wave
as well as the wave inside the slab using the method of Chapter 2.

{(b) Derive the field inside the slab using the Rytov approximation. Show
that this result reduces to that of (a) inside the slab when (8.10.33)
is satisfied but not outside the slab.
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